Reflection of a Rarefaction Wave from the Center of Symmetry: Theoretical Analysis of the Flow Features and Calculation by the Method of Characteristics

 
PIIS004446690001541-6-1
DOI10.31857/S004446690001541-6
Publication type Article
Status Published
Authors
Affiliation: Baranov Central Institute of Aviation Motors (CIAM)
Affiliation: Baranov Central Institute of Aviation Motors (CIAM)
Journal nameZhurnal vychislitelnoi matematiki i matematicheskoi fiziki
EditionVolume 58 Issue 7
Pages1164-1177
Abstract

For an unsteady spherical rarefaction wave in an ideal (inviscid and non-heat-conducting) gas, the features of the flow near the reflection of the first characteristic from the center of symmetry are investigated. Computations performed by the method of characteristics on nearly uniform grids usually used in such problems reveal sawtooth irregularities in the parameter distributions near the reflection point, whereas similar irregularities in the cylindrical and plane cases are absent. The amplitudes of the irregularities and the sizes of the domains where they are observed remain nearly unchanged when the number of points of the characteristic grid is increased by many times. Away from the reflection point in both time and space, the numerical solution completely “forgets” about the irregularities. This finding explains why these irregularities were ignored or overlooked earlier, but the nature of this phenomenon remains an open question. The present study has established that the spherical rarefaction flow near the reflection point differs fundamentally in structure from its plane and cylindrical counterparts. In the spherical case, the rarefaction flow near the reflection point was found to be nearly conical (entirely conical in the linear approximation). Allowance for this feature in the method of characteristics led to continuous regular distributions of the parameters. The performed analysis and computations revealed that a spherical rarefaction wave is strengthened (cumulates) theoretically unlimitedly in a small neighborhood of the reflection point (center of symmetry) of the first characteristic. Moreover, the claim that a gradient catastrophe occurs in this neighborhood was found to be untenable.

Keywordsspherical rarefaction wave, center of symmetry, neighborhood of the reflection point of the first characteristic, conical structure of linearized solution, features of the method of characteristics, cumulation of rarefaction, absence of gradient catastrophe
Received11.10.2018
Publication date11.10.2018
Number of characters1635
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 1318

Readers community rating: votes 0

1. Krajko A.N. Teoreticheskaya gazovaya dinamika: klassika i sovremennost'. M.: TORUS PRESS, 2010. 440 s.

2. Landau L.D., Lifshits E.M. Teoreticheskaya fizika. T. 6. Gidrodinamika. M.: Nauka, 1986. 736 s.

3. Morreeuw J.P., Saillard Y. Optimal isentropic compression of an initially uniform and stationary sphere: a reversed-time numerical method // Nuclear Fusion. 1978. Vol. 18. № 9. P. 1263–1270.

4. Katskova O.N., Krajko A.N. Raschet ploskikh i osesimmetrichnykh sverkhzvukovykh techenij pri nalichii neobratimykh protsessov. Trudy Vychislitel'nogo tsentra AN SSSR. 1964. 44 s.

5. Skibin V.A., Krajko A.N. Vychislitel'naya gazovaya dinamika i matematicheskoe modelirovanie ustrojstv printsipial'no novykh tipov // Vestnik MAI. 2005. T. 12. № 2. S. 123–141.

6. Valiev Kh.F., Iosilevskij I.L., Krajko A.N. Nestatsionarnoe istechenie iz ploskogo sloya, tsilindra i sfery goryachej plotnoj sredy Van der Vaal'sa // Izv. RAN. Mekham. zhidkosti i gaza. 2016. № 4. S. 12–20.

7. Krajko A.N., Tillyaeva N.I. Metod kharakteristik i polukharakteristi-cheskie peremennye v zadachakh profilirovaniya sverkhzvukovykh chastej ploskikh i osesimmetrichnykh sopel // Zh. vychisl. matem. i matem. fiz. 1996. T. 36. № 9. S. 159–176.

8. Krajko A.N. Struktura techenij razrezheniya i szhatiya v okrestnosti tochki otrazheniya “granichnoj” kharakteristiki // Trudy Matematicheskogo instituta im. V.A. Steklova. 1998. T. 223. S. 178–196.

9. Krajko A.N. Sfericheskoe techenie razrezheniya v okrestnosti tochki otrazheniya “granichnoj” kharakteristiki // Prikl. matem. i mekhan. 1999. T. 63. Vyp. 6. S. 972–979.

10. Bautin S.P., Deryabin S.L. Matematicheskoe modelirovanie istecheniya ideal'nogo gaza v vakuum. Novosibirsk: Nauka, 2005. 390 s.

11. Sedov L.I. Metody podobiya i razmernosti v mekhanike. Izdanie desyatoe, dopolnennoe. M.: Nauka, 1987. 430 s.

12. Kazhdan Ya.M. K voprosu ob adiabaticheskom szhatii gaza pod dejstviem sfericheskogo porshnya // Prikl. matem. i tekhn. fiz. 1977. № 1. S. 23–30.

13. Zababakhin I.E., Simonenko V.A. Sfericheskaya tsentrirovannaya volna szhatiya // Prikl. matem. i mekhan. 1978. T. 42. Vyp. 3. S. 573–576.

14. Krajko A.N. O neogranichennoj kumulyatsii pri odnomernom nestatsionarnom szhatii ideal'nogo gaza // Prikl. matem. i mekhan. 1996. T. 60. Vyp. 6. S. 1000–1007.

15. Krajko A.N., Tillyaeva N.I. Avtomodel'noe szhatie ideal'nogo gaza ploskim, tsilindricheskim ili sfericheskim porshnem // TVT. 1998. T. 36. № 1. S. 120–128.

16. Valiev Kh.F., Krajko A.N. Avtomodel'nye zadachi o szhatii ideal'nogo gaza i ego razlete iz tochki // Prikl. matem. i mekhan. 2015. T. 79. Vyp. 3. S. 344–361.

Система Orphus

Loading...
Up