Dynamic Models of Cargo Flow Organization on Railway Transport

 
PIIS042473880005780-7-1
DOI10.31857/S042473880005780-7
Publication type Article
Status Published
Authors
Occupation: Leading Researcher; Associate Professor at the Department of Business Analytics
Affiliation:
Central Economics and Mathematics Institute, Russian Academy of Sciences
National Research University "Higher School of Economics"
Address: Moscow, Russian Federation
Occupation: Principal researcher
Affiliation: CEMI RAS
Address: Russian Federation, Moscow
Journal nameEkonomika i matematicheskie metody
EditionVolume 55 Issue 3
Pages62-73
Abstract

This article is devoted to mathematical modeling of the process of organization of railway transportation on the transport network, which is a long section of the road with a large number of intermediate stations and located between them railway tracks for temporary storage of cargo. We investigate a model that predicts dynamics of congestion of stations and streams arising in the transportation network, under a given procedure traffic that uses the two technologies, the same for all stations. The first technology is based on the normative rules of interaction of neighboring stations. According to it, the intensity of the reception and dispatch of goods at an arbitrary station should depend on the workload of neighboring stations. The second technology uses the technical capabilities of the stations, and is based on the interaction of the station with neighboring railway tracks. An integral part of the organization of cargo transportation is a control system. This model uses a simple control system, which is that the volume of goods at neighboring stations must coincide with the time lag common to all stations. This model is described by a system of differential equations satisfying nonlocal linear restrictions. For this model the modes of cargo transportation satisfying the given control system are investigated. Such modes are described by solutions of the traveling wave type and two types of their expansions. One type of expansion is associated with the adjustment of transportation technologies and allows discontinuous solutions, the second type of expansion is associated with the weakening of the control system and allows the feasibility of nonlocal linear constraints with a given error. Stationary modes of transportation are investigated for stability.

Keywordsmathematical model, organization of cargo transportation, control system, solutions, quasi-solutions, stationary solutions, stability, numerical realization.
AcknowledgmentThe study was in part financially supported by the Russian Foundation for Basic Research (projects 19-01-00147 and 19-010-00958)
Received13.08.2019
Publication date22.08.2019
Number of characters21792
Cite  
100 rub.
When subscribing to an article or issue, the user can download PDF, evaluate the publication or contact the author. Need to register.
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной
1

Введение

2 Одной из главных отраслей любого государства является транспорт, который выполняет связующую, коммуникационную и обеспечивающую функции. Эффективное функционирование транспортной системы невозможно без решения таких проблем, как оптимальное планирование сетей и улучшение организации движения. Для их решения применяется математическое моделирование транспортных сетей. Главная задача математических моделей — определение и прогноз всех параметров функционирования транспортной сети, таких как интенсивность движения на всех элементах сети, объемы перевозок в сети, средние скорости движения, задержки и потери времени и т.д.
3 Математические модели, применяемые для анализа транспортных сетей, разнообразны по решаемым задачам, математическому аппарату, используемым данным и степени детализации описания движения. Основываясь на функциональной роли моделей, т.е. на тех задачах, для решения которых они применяются, можно условно выделить три основных класса: прогнозные, имитационные и оптимизационные модели (Швецов, 2003, с. 3–46).
4 Прогнозные модели позволяют определить, какими будут транспортные потоки в сети при известных геометрии и характеристике транспортной сети. Прогноз загрузки транспортной сети включает в себя расчет усредненных характеристик движения, таких как объемы межрайонных передвижений, интенсивность потока, распределение транспортных средств по путям движения и др. При помощи прогнозных моделей можно прогнозировать последствия изменений в транспортной сети или в размещении объектов. Имитационное моделирование ставит своей целью воспроизведение всех деталей движения, при этом усредненные значение потоков и распределение по путям считаются известными и служат исходными данными для этих моделей. Таким образом, прогноз потоков и имитационное моделирование являются дополняющими друг друга направлениями (Гасников и др., 2013).
5 По функциональной роли к классу имитационных моделей можно отнести широкий спектр моделей динамики транспортного потока. В них может применяться разная техника — от имитации отдельного транспортного средства до описания динамики функции плотности транспортных средств на транспортной сети. Модели прогноза потоков и имитационные модели предназначены для адекватного воспроизведения транспортных потоков (Cremer, Ludwig, 1986; Nagel, Schreckenberg, 1992).
6 Существует множество моделей для оптимизации функционирования транспортных сетей. С их помощью решаются задачи оптимизации маршрутов перевозок, выработки оптимальной конфигурации сети и др. (Лившиц, 1987; Стенбринк, 1981; Галабурда, 1985; Авен, Ловецкий, Моисеенко, 1985; Васильева, Игудин, Лившиц, 1987; Leventhal, Nemhauser, Trotter, 1973).
7 По способу описания транспортных потоков все модели транспортных сетей можно разбить на классы: 1) аналоги, 2) следования за лидером, 3) вероятностные.

Number of purchasers: 2, views: 590

Readers community rating: votes 0

1. Aven O.I., Lovetskii S.E., Moiseenko G.E. (1985). Optimization of Traffic Flows. Moscow: Nauka (in Russian).

2. Bando M., Hasebe K., Nakayama A., Shibata A., Sugiyama Y. (1994). Structure Stabily of Congestion in Traffic Dynamics. Japan Journal of Industrial and Applied Mathematics, 11, 203–223.

3. Bando M., Hasebe K., Nakayama A., Shibata A., Sugiyama Y. (1995). Dynamical Model Congestion and Numerical Simulation. Physical Review E, 51, 1035–1042.

4. Beklaryan L.A., Khachatryan N.K. (2006). Traveling Wave Type Solutions in Dynamic Transport Models. Functional Differential Equations, 13, 12, 125–155.

5. Beklaryan L.A., Khachatryan N.K. (2013). On One Class of Dynamic Transportation Models. [Ob odnom klasse dinamicheskikh modeley gruzoperevozok.] Computational Mathematics and Mathematical Physics, 53, 10, 1649–1667 (in Russian).

6. Cremer M., Ludwig J. (1986). A Fast Simulation Model for Traffic Flow on the Basis of Boolean Operations. Mathematics and Computers in Simulation, 28, 297–303.

7. Galaburda V.G. (1985). Optimal Planning of Cargo Traffic. [Optimal’noe planirovanie gruzopotokov.] Moscow: Transport (in Russian).

8. Gasnikov A.V., Klenov S.L., Nurminskii E.A., Kholodov Ya.A., Shamrai N.B. (2013). Introduction to Mathematical Model Operation of Traffic Flows. Gasnikov A.V. (ed.). Moscow: MCCME (in Russian).

9. Haight F. (1966). The Mathematical Theory of Traffic Flows. Moscow: Mir (in Russian).

10. Helbing D. (2001). Traffic and Related Self-Driven Many Particle Systems. Reviews of Modern Physics, 73, 4, 1067–1141.

11. Helbing D., Tilch B. (1998). Generalized Force Model of Traffic Dynamics. Physical Review E, 58, 133–138.

12. Inose H., Hamada T. (1983). Road Traffic Control. Moscow: Transport (in Russian).

13. Kerner B.S. (2009). Introduction to Modern Traffic Flow Theory and Control. The Long Road to Three-Phase Traffic Theory. Berlin Heidelberg: Springer-Verlag.

14. Khachatryan N.K., Akopov A.S. (2017). Model for Organizing Cargo Transportation with an Initial Station of Departure and a Final Station of Cargo Distribution. Business Informatics, 1, 25–35.

15. Khachatryan N.K., Akopov A.S., Belousov F.A. (2018). About Quasi-Solutions of Traveling Wave Type in Models for Organizing Cargo Transportation. Business Informatics, 1 (43), 61–70.

16. Kholodov Ya.A., Kholodov A.S., Gasnikov A.V., Morozov I.I., Tarasov V.N. (2010). Mathematical Modelling of the Traffic Flows — Current Problems and Prospects of their Decision. In: “Proceedings of MIPT”, 2, 4 (8), 64–74 (in Russian).

17. Leventhal T., Nemhauser G.L., Trotter L.Jr. (1973). A Column Generation Algorithm for Optimal Traffic Assignment. Transportation Science, 7, 168–176.

18. Lighthill M.J., Whitham G.B. (1955). On Kinematic Waves: II. A Theory of Traffic on Long Crowded Roads. Proceedings of the Royal Society. Ser. A, 229, 317–345.

19. Livshits V.N. (1987). Automation of Planning and Control of Transport Systems. Moscow: Transport (in Russian).

20. Nagel K., Schreckenberg M. (1992). A Cellular Automaton Model for Freeway Traffic. Journal de Physique I, 2, 2221–2229.

21. Pipes L.A. (1953). An Operational Analysis of Traffic Dynamics. Journal of Applied Physics, 24, 274–281.

22. Renyi A. (1964). On Two Mathematical Models of the Traffic on a Divided Highway. Journal of Applied Probability, 1, 311–320.

23. Richards P. I. (1956). Shock Waves on the Highway. Operations Research, 4, 42–51.

24. Rozhdestvenskii B.L., Yanenko N.N. (1978). Systems of Quasilinear Equations and their Applications to Gas Dynamics. Moscow: Nauka (in Russian).

25. Shvetsov V.I. (2003). Automation and Remote Control. Avtomatika i Telemekhanika, 11, 3–46 (in Russian).

26. Solomon H., Wang P. (1972). Nonhomogeneous Poisson Fields of Random Lines with Applications to Traffic Flow. Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, 3, 383–400.

27. Steenbrink P.A. (1981). Optimization of Transport Networks. Moscow: Transport (in Russian). [Translated from Steenbrink P.A. (1974). Optimization of Transport Networks. New York: Wiley.]

28. Sukhinova A.B., Trapeznikova M.A., Chetverushkin B.N., Churbanova N.G. (2009). Two-Dimensional Macroscopic Model of Traffic Flows. Mathematical Models and Computer Simulations, 1, 6, 669–676 (in Russian).

29. Vasil’eva E.M., Igudin R.V., Livshits V.N. (1987). Optimization of Planning and Control of Transport Systems. Moscow: Transport (in Russian).

30. Whitham G. (1977). Linear and Nonlinear Waves. [Lineynye i nelineynye volny.] Moscow: Mir (in Russian).

Система Orphus

Loading...
Up