Photorealistic Rendering of Images Formed by Augmented Reality Optical Systems

 
PIIS013234740000733-1-1
DOI10.31857/S013234740000733-1
Publication type Article
Status Published
Authors
Affiliation:
ITMO University
Keldysh Institute of Applied Mathematics, Russian Academy of Sciences
Address: St. Petersburg, Russia
Affiliation: Keldysh Institute of Applied Mathematics, Russian Academy of Sciences
Address: Moscow, Russia
Affiliation: Keldysh Institute of Applied Mathematics, Russian Academy of Sciences
Address: Moscow, Russia
Affiliation: ITMO University
Address: St. Petersburg, Russia
Affiliation:
Keldysh Institute of Applied Mathematics, Russian Academy of Sciences
Vavilov State Optical Institute
Address: Moscow, Russia
Affiliation: Keldysh Institute of Applied Mathematics, Russian Academy of Sciences
Address: Moscow, Russia
Affiliation:
ITMO University
Keldysh Institute of Applied Mathematics, Russian Academy of Sciences
Address: St. Petersburg, Russia
Journal nameProgrammirovanie
EditionIssue 4
Pages11-25
Abstract

Stochastic ray tracing is used for rendering photorealistic images formed by augmented reality optical systems that combine the image generated by an optoelectronic device with the image of the environment. Methods for improving the efficiency of stochastic ray tracing that preserve the physical correctness of the simulation are proposed. Using a head-up display (HUD) as an example, it is shown that the forward stochastic ray tracing methods are sometimes more efficient than backward stochastic ray tracing methods for the visual simulation of augmented reality images. Approaches making it possible to combine the forward, backward, and bidirectional ray tracing in a unified simulation procedure are proposed. The results are illustrated by synthesized images produced by the optical system of head-up display.

Keywords
Received01.10.2018
Publication date07.10.2018
Number of characters1011
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 1717

Readers community rating: votes 0

1. Hanika J., Dachsbacher C. Efficient Monte Carlo Rendering with Realistic Lenses / Computer Graphics Forum, 2014, vol. 33, no. 2, pp. 323–332.

2. Wu J., Zheng C., Hu X., Xu F. Rendering realistic spectral bokeh due to lens stops and aberrations / The Visual Computer, 2013, vol. 29, no. 1, pp. 41–52.

3. Joo H., Kwon S., Lee S., E. Eisemann, S. Lee. Efficient Ray Tracing Through Aspheric Lenses and Imperfect Bokeh Synthesis / Eurographics Symposium on Rendering, 2016, vol. 35, no. 4, pp. 99–105.

4. Zhdanov D., Potemin I., Garbul' A., Sokolov V., Valiev I. Metody stokhasticheskoj trassirovki luchej v zadachakh postroeniya izobrazhenij, formiruemykh real'nymi opticheskimi sistemami // Trudy 26-oj Mezhdunarodnojkonferentsii po komp'yuternoj grafike i zreniyu 19–23 sentyabrya 2016, Nizhnij Novgorod, s. 29–33.

5. Melzer J.E. Head Mounted Displays, Mac Graw Hill, 1997, 352

6. Zhdanov D.D., Potemin I.S., Kishalov A.A., Zhdanov A.D., Bogdanov N.N. Stochastic ray tracing methods in problems of photorealistic image synthesis for augmented reality systems / Proc. of 27th International Conference on Computer Graphics and Vision, Perm, PSU, 2017, September 24–28, pp. 42–46.

7. Kajiya J.T. The rendering equation / Special Interest Group on Graphics and Interactive Techniques Proceedings (SIGGRAPH Proceedings), 1986, vol. 20, pp. 143–150.

8. Livshits I., Letunovskaya M., Potemin I., Okishev S., Zhdanov D. Aberration vignetting phenomena and its visualization in wide angular objectives / Proceedings of Society of Photographic Instrumentation Engineers, 2016, vol. 10021, pp. 100210A.

9. Barladyan B.Kh., Shapiro L.Z., Denisov E.Yu., Voloboj A.G. Ehffektivnyj mnogopotokovyj algoritm rascheta global'noj osveschennosti // Programmirovanie, 2017, № 4, s. 3–12.

Система Orphus

Loading...
Up