Controlled Motion of a Spherical Robot of Pendulum Type on an Inclined Plane

 
PIIS086956520001374-4-1
DOI10.31857/S086956520001374-4
Publication type Article
Status Published
Authors
Affiliation:
Affiliation:
Affiliation:
Journal nameDoklady Akademii nauk
Edition
Pages258-263
Abstract

In this work we consider a model of the controlled motion of a spherical robot with an axisymmetric pendulum actuator on an inclined plane. First integrals of motion and partial solutions are presented and their stability is analyzed. It is shown that steady solutions exist only at an inclination angle less than some critical value and only for constant control action.

Keywords
Received14.10.2018
Publication date16.10.2018
Number of characters361
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 1582

Readers community rating: votes 0

1. Pivovarova E. N., Ivanova T. B. Issledovanie ustojchivosti periodicheskikh reshenij v zadache o kachenii shara s mayatnikom // Vestn. UdGU. Matem. Mekhan. Komp'yut. nauki. 2012. 4. S. 146–155.

2. Ivanova T. B., Pivovarova E. N. Dinamika i upravlenie sfericheskim robotom s osesimmetrichnym mayatnikovym privodom // Nelinejnaya dinamika. 2013. T. 9. 3. S. 507–520.

3. Balandin D. V., Komarov M. A., Osipov G. V. Upravlenie dvizheniem sfericheskogo robota s mayatnikovym privodom // Izvestiya RAN. Teoriya i sistemy upravleniya. 2013. 4. S. 150–163.

4. Karavaev Yu. L., Kilin A. A. Negolonomnaya dinamika i upravlenie sferorobotom s vnutrennej omnikolesnoj platformoj: teoriya i ehksperimenty // Trudy Matematicheskogo instituta imeni V. A. Steklova. 2016. T. 295. S. 174–183.

5. Karavaev Yu. L, Kilin A. A. The dynamics and control of a spherical robot with an internal omniwheel platform // Regul. Chaotic. Dyn. 2015. V. 20. . 2. P. 134–152.

6. Roozegar M., Mahjoob M. J., Ayati M. Adaptive Estimation of Nonlinear Parameters of a Nonholonomic Spherical Robot Using a Modified Fuzzy-based Speed Gradient Algorithm // Regul. Chaotic Dyn. 2017. V. 22. 3. P. 226–238.

7. Ylikorpi T. J., Halme A. J., Forsman P. J. Dynamic modeling and obstacle-crossing capability of flexible pendulum-driven ball-shaped robots // Robot. Auton. Syst. 2017. V. 87. P. 269–280.

8. Svinin M., Bai Y., Yamamoto M. Dynamic model and motion planning for a pendulum-actuated spherical rolling robot // Proc. 2015 IEEE Int. Conf. Robot. Autom. 2015. P. 656–661.

9. Martynenko Yu. G., Formal'skij A. M. Upravlenie prodol'nym dvizheniem odnokolesnogo apparata po nerovnoj poverkhnosti // Izvestiya RAN. Teoriya i sistemy upravleniya. 2005. 4, S. 165–173.

10. Nasrallah D. S., Michalska H., Angeles J. Controllability and Posture Control of a Wheeled Pendulum Moving on an Inclined Plane // IEEE Transactions on Robotics, 2007. V. 23. 3. P. 564–577.

11. Nasrallah D. S., Angeles J., Michalska H. Velocity and Orientation Control of an Anti-Tilting Mobile Robot Moving on an Inclined Plane // Proc. 2006 IEEE Int. Conf. Robot. Autom. 2006. P. 3717–3732.

12. Hogan F. R., Forbes J. R. Modeling of spherical robots rolling on generic surfaces // Multibody System Dynamics. 2015. V. 35. 1. P. 91–109.

13. Borisov A. V., Mamaev I. S. Two non-holonomic integrable problems tracing back to Chaplygin // Regul. Chaotic Dyn. 2012. V. 17. 2. P. 191–198.

14. Ivanova T. B., Kilin A. A., Pivovarova E. N. Controlled Motion of a Spherical Robot with Feedback. I // J. Dyn. Control Syst. 2017. https://doi.org/10.1007/s10883-017-9387-2.

15. Kilin A. A., Pivovarova E. N., Ivanova T. B. Spherical Robot of Combined Type: Dynamics and Control // Regul. Chaotic Dyn. 2015. V. 20. 6. P. 716–728.

Система Orphus

Loading...
Up