Control of a Rigid Body Carrying an Oscillator with Incomplete Information

 
PIIS086956520003119-3-1
DOI10.31857/S086956520003119-3
Publication type Article
Status Published
Authors
Affiliation: Ishlinsky Institute for Problems in Mechanics, RAS
Address: Russian Federation,
Journal nameDoklady Akademii nauk
EditionVolume 482 Issue 1
Pages23-27
Abstract

A two-body system consisting of a rigid body with a linear oscillator attached to it is considered. The body moves along a horizontal line under the action of a control force and unknown disturbance. The phase state of the oscillator is assumed to be not available for measuring. A bounded feedback control is proposed which brings the body to the prescribed terminal state in a finite time.

Keywords
Received04.11.2018
Publication date04.11.2018
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 1257

Readers community rating: votes 0

1. Kalman R.E., Falb P.L., Arbib M.A. Topics in Mathematical System Theory. N.Y.: McGraw-Hill, 1969. 358 p. = Kalman R., Falb P., Arbib M. Ocherki po matematicheskoj teorii sistem. M.: Mir, 1971. 400 s.

2. Krasovskij N.N. Teoriya upravleniya dvizheniem. M.: Nauka, 1968. 476 s.

3. Sontag E. D. Mathematical control theory: Deterministic nite-dimensional systems. New York: Springer, 1998. 544 s.

4. Chernous'ko F. L. // PMM. 1988. T. 52. Vyp. 4. S. 549558.

5. Chernousko F.L., Ananievski I.M., Reshmin S.A. Control of Nonlinear Dynamical Systems. Methods and Applications. B.: Springer, 2008. 396 p.

6. Anan'evskij I.M., Anokhin N.V., Ovseevich A.I. // DAN. 2010. T. 434. № 3. S. 319-323.

7. Ovseevich A. // JOTA. 2015. V. 165. № 2. P. 532544.

8. Anan'evskij I.M., Ishkhanyan T.A. // Izv. RAN. Teoriya i sistemy upravleniya. 2016. № 3. C. 167175.

Система Orphus

Loading...
Up