Nonisothermal Flow of Polymer Fluid between Two Coaxial Cylinders

 
PIIS004446690001462-9-1
DOI10.31857/S004446690001462-9
Publication type Article
Status Published
Authors
Affiliation:
Novosibirsk State University
Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences
Affiliation:
Novosibirsk State University
Institute of Computational Technologies, Siberian Branch, Russian Academy of Sciences
Address: Russian Federation
Affiliation:
Novosibirsk State University
Institute of Computational Technologies, Siberian Branch, Russian Academy of Sciences
Address: Russian Federation
Journal nameZhurnal vychislitelnoi matematiki i matematicheskoi fiziki
EditionVolume 58 Issue 7
Pages1147-1163
Abstract

An algorithm for solving a stationary nonlinear problem of a nonisothermal flow of an incompressible viscoelastic polymer fluid between two coaxial cylinders is developed on the basis of Chebyshev approximations and the collocation method. In test calculations, the absence of saturation of the algorithm is shown. A posteriori estimates of two error components in the numerical solution—the error of approximation method and the round-off error—are obtained. The behavior of these components as a function of the number of nodes in the spatial grid of the algorithm and the radius of the inner cylinder is analyzed. The calculations show exponential convergence, stability to rounding errors, and high time efficiency of the algorithm developed.

Keywordspolymer fluid dynamics, algorithm without saturation, Chebyshev polynomials, collocation method, error estimates, exponential convergence
Received11.10.2018
Publication date11.10.2018
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 333

Readers community rating: votes 0

1. Qin H., Cal. Yi, Dong J., Lee Y.-S. Direct printing of capacitive touch sensors on flexible substrates by additive E-Jet printing with silver nanoinks // J. of Manufacturing Sci. and Eng. 2017. Vol. 139 / 031011. P. 1–7.

2. Tuev V.I., Malyutin N.D., Loschilov A.G. i dr. Issledovanie vozmozhnostej primeneniya additivnoj printernoj tekhnologii formirovaniya plenok organicheskikh i neorganicheskikh materialov ehlektroniki // Dokl. TUSURa. 2015. № 4 (38). C. 52–63.

3. Pokrovskii V.N. The mesoscopic theory of polymer dynamics. 2nd ed. Berlin: Springer, 2010.

4. Altukhov Yu.A., Gusev A.S., Pyshnograj G.V. Vvedenie v mezoskopicheskuyu teoriyu tekuchesti polimernykh sistem. Barnaul: Izd-vo AltGPA, 2012.

5. Blokhin A.M., Rudomyotova A.S. Statsionarnoe reshenie uravnenij, opisyvayuschikh neizotermicheskuyu ehlektrokonvektsiyu slaboprovodyaschej neszhimaemoj polimernoj zhidkosti // Sib. zh. industr. matem. 2015. T. 18. № 1 (61). S. 3–13.

6. Blokhin A.M., Egitov A. V., Tkachev D.L. Linejnaya neustojchivost' reshenij matematicheskoj modeli, opisyvayuschej techeniya polimerov v beskonechnom kanale // Zh. vychisl. matem. i matem. fiz. 2015. T. 55. № 5. S. 850–875.

7. Blokhin A.M., Kruglova E.A., Semisalov B.V. Statsionarnye neizotermicheskie techeniya neszhimaemoj vyazkouprugoj polimernoj zhidkosti mezhdu dvumya soosnymi tsilindrami // Zh. vychisl. matem. i matem. fiz. 2017. T. 57. № . C. 1184–1197.

8. Blokhin A.M., Semisalov B.V., Shevchenko A.S. Statsionarnye resheniya uravnenij, opisyvayuschikh neizotermicheskie techeniya neszhimaemoj vyazkouprugoj polimernoj zhidkosti // Matem. modelirovanie 2016. T. 28. №10. S. 3–22.

9. Blokhin A.M., Semisalov B.V. Statsionarnoe techenie neszhimaemoj vyazkouprugoj polimernoj zhidkosti v kanale s ehllipticheskim secheniem // Sib. zh. industr. matem. 2014. T. XVII. № 4 (60). S. 38–47.

10. Babenko K.I. Osnovy chislennogo analiza. M.: Fizmatlit, 1986. 714 s.

11. Semisalov B.V. Bystryj nelokal'nyj algoritm resheniya kraevykh zadach Nejmana–Dirikhle s kontrolem pogreshnosti // Vychisl. metem. programmirovanie. 2016. T. 17, №4. S. 500–522.

12. Dzyadyk V.K. Vvedenie v teoriyu ravnomernogo priblizheniya funktsij polinomami. M.: Fizmatlit, 1977. 512 s.

13. Bakhvalov N.S., Zhidkov N.P., Kobel'kov G.M. Chislennye metody. 6-e izd. M.: BINOM. Laboratoriya znanij, 2008. 636 s.

14. Trefethen L.N. Approximation theory and approximation practice. SIAM, 2013. 295 p.

15. Rump S.M. Verification methods: Rigorous results using floating-point arithmetic // Acta Numerica. 2010. Vol. 19. P. 287–449.

16. Alefeld G., Herzberger J. Introdution to interval computations. N.Y.: Acad. Press, 1983. 352 p.

17. Godunov S.K. Reshenie sistem linejnykh uravnenij. Novosibirsk: Nauka, 1980. 177 s.

18. Biberdorf Eh.A., Popova N.I. Garantirovannaya tochnost' sovremennykh algoritmov linejnoj algebry. Novosibirsk: ISO RAN, 2006. 320 s.

19. Demmel' Dzh. Vychislitel'naya linejnaya algebra. Teoriya i prilozheniya: Per. s angl. M.: Mir, 2001. 430 s.

20. Trenogin V.A. Funktsional'nyj analiz. M.: Nauka, 1980. 496 s.

21. Gornov A.Yu. Vychislitel'nye tekhnologii resheniya zadach optimal'nogo upravleniya. Novosibirsk: Nauka, 2009. 279 s.

Система Orphus

Loading...
Up