Development and Application of the Fourier Method for the Numerical Solution of Ito Stochastic Differential Equations

 
PIIS004446690001460-7-1
DOI10.31857/S004446690001460-7
Publication type Article
Status Published
Authors
Affiliation: St. Petersburg Polytechnic University of Peter the Great
Journal nameZhurnal vychislitelnoi matematiki i matematicheskoi fiziki
EditionVolume 58 Issue 7
Pages1108-1120
Abstract

This paper is devoted to the development and application of the Fourier method to the numerical solution of Ito stochastic differential equations. Fourier series are widely used in various fields of applied mathematics and physics. However, the method of Fourier series as applied to the numerical solution of stochastic differential equations, which are proper mathematical models of various dynamic systems affected by random disturbances, has not been adequately studied. This paper partially fills this gap.

Keywordsmultiple Fourier series, Legendre polynomials, repeated stochastic integral, Ito stochastic integral, Stratonovich stochastic integral, stochastic analog of Taylor’s formula, Ito stochastic differential equation, numerical integration, mean square convergence
Received11.10.2018
Publication date11.10.2018
Number of characters600
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 1492

Readers community rating: votes 0

1. Gikhman I.I., Skorokhod A.V. Stokhasticheskie differentsial'nye uravneniya i ikh prilozheniya. Kiev: Nauk. dumka, 1982.

2. Kloeden P.E., Platen E. Numerical solution of stochastic differential equations. Berlin: Springer, 1992.

3. Mil'shtejn G.N. Chislennoe integrirovanie stokhasticheskikh differentsial'nykh uravnenij. Sverdlovsk: Izd-vo Ural'sk. un-ta, 1988.

4. Arato M. Linear stochastic systems with constant coefficients. A statistical approach. Berlin, Springer, 1982.

5. Shiryaev A.N. Osnovy stokhasticheskoj finansovoj matematiki. M.: Fazis, 1998.

6. Platen E., Wagner W. On a Taylor formula for a class of Ito processes // Probab. Math. Statist. 1982. № 3. P. 37–51.

7. Kloeden P.E., Platen E. The Stratonovich and Ito-Taylor expansions // Math. Nachr. 1991. V. 151. P. 33–50.

8. Kul'chitskij O.Yu., Kuznetsov D.F. Unifitsirovannoe razlozhenie Tejlora–Ito // Zap. nauchn. seminarov POMI RAN. Veroyatnost' i statistika 2. 1997. T. 244. S. 186–204.

9. Kuznetsov D.F. Novye predstavleniya razlozheniya Tejlora–Stratonovicha // Zap. nauchn. seminarov POMI RAN. Veroyatnost' i statistika 4. 2001. T. 278. S. 141–158.

10. Kuznetsov D.F. Chislennoe integrirovanie stokhasticheskikh differentsial'nykh uravnenij. 2. SPb: Izd-vo Politekhn. un-ta, 2006.

11. Nikitin N.N., Razevig V.D. Metody tsifrovogo modelirovaniya stokhasticheskikh differentsial'nykh uravnenij i otsenka ikh pogreshnostej // Zh. vychisl. matem. i matem. fiz. 1978. T. 18. № 1. S. 106–117.

12. Kloeden P.E., Platen E., Wright I.W. The approximation of multiple stochastic integrals // Stoch. Anal. Appl. 1992. V. 10. № 4. P. 431–441.

13. Kuznetsov D.F. Novye predstavleniya yavnykh odnoshagovykh chislennykh metodov dlya stokhasticheskikh differentsial'nykh uravnenij so skachkoobraznoj komponentoj // Zh. vychisl. matem. i matem. fiz. 2001. T. 41. № 6. S. 922–937.

14. Kuznetsov D.F. Strong approximation of multiple Ito and Stratonovich stochastic integrals: multiple Fourier series approach. 2nd Ed. SPb: Polytechn. Univ. Publ. House, 2011.

15. Kuznetsov D.F. Multiple Ito and Stratonovich stochastic integrals: Fourier-Legendre and trigonometric expansions, approximations, formulas // Electr. J. Differ. Equations and Control Proc. 2017. № 1. P. A.1–A.385.

16. Milstein G.N., Tretyakov M.V. Stochastic numerics for mathematical physics. Berlin: Springer, 2004.

17. Allen E. Approximation of triple stochastic integrals through region subdivision // Communicat. in Appl. Anal. Special Tribute Issue to Prof. V. Lakshmikantham. 2013. V. 17. P. 355–366.

18. Kloeden P.E., Platen E., Schurz H. Numerical solution of SDE through computer experiments. Berlin: Springer, 1994.

19. Kuznetsov D.F. Metod razlozheniya i approksimatsii povtornykh stokhasticheskikh integralov Stratonovicha, osnovannyj na kratnykh ryadakh Fur'e po polnym ortonormirovannym sistemam funktsij // Ehlektr. Zh. Differ. uravneniya i protsessy upravl. 1997. № 1. S. 18–77.

20. Kuznetsov D.F. Nekotorye voprosy teorii chislennogo resheniya stokhasticheskikh differentsial'nykh uravnenij Ito. SPb: Izd-vo SPbGTU, 1998.

21. Kuznetsov D.F. Primenenie polinomov Lezhandra k srednekvadraticheskoj approksimatsii reshenij stokhasticheskikh differentsial'nykh uravnenij // Probl. upravl. i inform. 2000. № 5. S. 84–104.

Система Orphus

Loading...
Up