views: 1288
Readers community rating: votes 0
1. Wilcox C.H. Scattering Theory for Diffraction Gratings. Applied Mathematical Sciences Series Vol. 46. Singapure: Springer, 1997. 525 p.
2. Nazarov S.A., Plamenevsky B.A. Elliptic problems in domains with piecewise smooth boundaries. Berlin, New York: Walter de Gruyter. 1994.
3. Wood R. On the remarkable case of uneven distribution of light in a difraction grating spectrum // Proc. Phys. Soc. London. 1902. V. 18. P. 269–275.
4. Kamotskij I.V., Nazarov S.A. Rasshirennaya matritsa rasseyaniya i ehksponentsial'no zatukhayuschie resheniya ehllipticheskoj zadachi v tsilindricheskoj oblasti // Zapiski nauchn. seminarov peterburg. otdeleniya matem. instituta RAN. 2000. T. 264. S. 66–82.
5. Nazarov S.A. Asimptotika sobstvennykh chisel na nepreryvnom spektre regulyarno vozmuschennogo kvantovogo volnovoda // Teoreticheskaya i matematicheskaya fizika. 2011. T. 167, 2. C. 239–262.
6. Vajnshtejn O.A. Teoriya difraktsii i metod faktorizatsii. M.: Sovetskoe radio, 1966.
7. Nazarov S.A. Anomalii rasseyaniya v rezonatore vyshe porogov nepreryvnogo spektra // Matem. sbornik. 2015. T. 206, 6. S. 15–48.
8. Korolkov A.I., Nazarov S.A., A. V. Shanin A.V. Stabilizing solutions at thresholds of the continuous spectrum and anomalous transmission of waves // // ZAMM. 2016. V. , . P.
9. Bulla W., Gesztesy F., Renrer W., Simon B. Weakly coupled bound states in quantum waveguides // Proc. Amer. Math. Soc. 1997. V. 125, 8. P. 1487–1495.
10. Gadyl'shin R.R. O lokal'nykh vozmuscheniyakh kvantovykh volnovodov // Teoreticheskaya i matematicheskaya fizika. 2005. T. 145, 3. S. 358–371.
11. Grushin V.V. O sobstvennykh znacheniyakh finitno vozmuschennogo operatora Laplasa v beskonechnykh tsilindricheskikh oblastyakh // Matem. zametki. 2004. T. 75, 3. S. 360–371.
12. Nazarov S.A. Variatsionnyj i asimptoticheskij metody poiska sobstvennykh chisel pod porogom nepreryvnogo spektra // Sibirsk. matem. zhurnal. 2010. T. 51, 5. S. 1086–1101.
13. Nazarov S.A. Prinuditel'naya ustojchivost' sobstvennogo znacheniya na nepreryvnom spektre volnovoda s prepyatstviem // Zhurnal vychisl. matem. i matem. fiz. 2012. T. 52, 3. C. 521-–538.
14. Nazarov S.A. Prinuditel'naya ustojchivost' prostogo sobstvennogo chisla na nepreryvnom spektre volnovoda // Funktsional'nyj analiz i ego prilozheniya. 2013. T. 47, 3. S. 37–53.
15. Nazarov S.A. Lokalizovannye uprugie polya v periodicheskikh volnovodakh s defektami // Prikladnaya mekhanika i tekhnicheskaya fizika. 2011. T. 52, 2. S. 183–194.
16. Nazarov S.A. Neotrazhenie i zakhvat uprugikh voln v slaboiskrivlennoj izotropnoj polose // Doklady RAN. 2014. T. 455, 2. S. 153-–157.
17. Nazarov S.A. Okoloporogovye ehffekty rasseyaniya voln v iskrivlennom uprugom dvumernom volnovode // Prikladnaya matem. i mekhanika. 2015. T. 79, 4. S. 530-–549.
18. Mandel'shtam L.I. Lektsii po optike teorii otnositel'nosti i kvantovoj mekhanike. Sb. trudov. T. 2. M.: Izd-vo AN SSSR, 1947.
19. Vorovich I.I., Babeshko V.A. Dinamicheskie smeshannye zadachi teorii uprugosti dlya neklassicheskikh oblastej. M.: Nauka, 1979.
20. Nazarov S.A. Usloviya izlucheniya Umova–Mandel'shtama v uprugikh periodicheskikh volnovodakh // Matem. sbornik. 2014. T. 205, 7. S. 43–72.
21. Umov N.A. Uravneniya dvizheniya ehnergii v telakh. Odessa: Tipogr. Ul'rikha i Shul'tse, 1874.
22. Poynting J. H. On the transfer of energy in the electromagnetic field // Phil. Trans. of the Royal Society of London, 1884, V. 175. P. 343–361.
23. Kozlov V.A., Nazarov S.A., Orlof A. Trapped modes supported by localized potentials in the zigzag graphene ribbon // C. R. Acad. Sci. Paris. Ser. 1. 2016. T. 354, 1. P. 63–67.
24. Van Dajk M.D. Metody vozmuschenij v mekhanike zhidkostej. M.: Mir, 1967.
25. Il'in A.M. Soglasovanie asimptoticheskikh razlozhenij reshenij kraevykh zadach. M.: Nauka, 1989.
26. Vishik M.I., Lyusternik L.A. Regulyarnoe vyrozhdenie i pogranichnyj sloj dlya linejnykh differentsial'nykh uravnenij s malym parametrom // Uspekhi matem. nauk. 1957. T. 12, 5. S. 3–122.
27. Mazja W.G., Nasarow S.A., Plamenewski B.A. Asymptotische Theorie elliptischer Randwertaufgaben in singular gestorten Gebieten. 1. Berlin: Akademie-Verlag. 1991. (Anglijskij perevod : Maz’ya V., Nazarov S., Plamenevskij B. Asymptotic theory of elliptic boundary value problems in singularly perturbed domains. Vol. 1. Basel: Birkhauser Verlag, 2000)
28. Kondrat'ev V.A. Kraevye zadachi dlya ehllipticheskikh uravnenij v oblastyakh s konicheskimi ili uglovymi tochkami // Trudy Moskovsk. matem. obschestva. 1963. T. 16. S. 219–292.
29. Maz'ya V.G., Plamenevskij B.A. O koehffitsientakh v asimptotike reshenij ehllipticheskikh kraevykh zadach v oblasti s konicheskimi tochkami // Math. Nachr. 1977. Bd. 76. S. 29–60.
30. Nazarov S.A. Properties of spectra of boundary value problems in cylindrical and quasicylindrical domains // Sobolev Spaces in Mathematics. V. II (Maz’ya V., Ed.) International Mathematical Series , Vol. 9. New York: Springer, 2008. P. 261–309.
31. Kato T. Teoriya vozmuschenij linejnykh operatorov. M.: Mir, 1972.
32. Polia G., Sege G. Izoperimetricheskie neravenstva v matematicheskoj fizike. M.: Fizmatgiz, 1962.
33. Guilope L. Theorie spctrale de quelques varietes a bouts // Ann. Sci. Ecole Norm. Sup. 1989. V. 22, 4. P. 137–160.
34. Aslanyan A., Parnovski L., Vassiliev D. Complex resonces ib acoustic waveguides // Q. J. Mech. Appl. Math. 2000. V. 53. P. 429–447.
35. Molchanov S., Vainberg B. Scattering solutions in networks of thin fibers: small diameter asymptotics // Comm. Math. Phys. 2007. V. 273, 2. P. 533–-559.
36. Grieser D. Spectra of graph neighborhoods and scattering // Proc. London Math. Soc. 2008. V. 97, 3. P. 718–752.
37. Pankrashkin K. Eigenvalue inequalities and absence of threshold resomamnces for waveguide junctions // J. of Math. Anal. and Appl. 2017. V. 449, 1. P. 907–925.
38. Nazarov S.A. Pochti stoyachie volny v periodicheskom volnovode s rezonatorom i okoloporogovye sobstvennye chisla // Algebra i analiz. 2016. T. 28, 3. S. 111–160.