Various manifestations of Wood anomalies in locally curved quantum waveguides

 
PIIS004446690003542-7-1
DOI10.31857/S004446690003542-7
Publication type Article
Status Published
Authors
Affiliation: SPbSU
Address: Russian Federation
Journal nameZhurnal vychislitelnoi matematiki i matematicheskoi fiziki
EditionVolume 58 Issue 11
Pages1911-1930
Abstract

  

Keywords
AcknowledgmentThe work was performed in the framework of the project 17–11–01003 of the Russian Science Foundation.
Received15.01.2019
Publication date15.01.2019
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 1066

Readers community rating: votes 0

1. Wilcox C.H. Scattering Theory for Diffraction Gratings. Applied Mathematical Sciences Series Vol. 46. Singapure: Springer, 1997. 525 p.

2. Nazarov S.A., Plamenevsky B.A. Elliptic problems in domains with piecewise smooth boundaries. Berlin, New York: Walter de Gruyter. 1994.

3. Wood R. On the remarkable case of uneven distribution of light in a difraction grating spectrum // Proc. Phys. Soc. London. 1902. V. 18. P. 269–275.

4. Kamotskij I.V., Nazarov S.A. Rasshirennaya matritsa rasseyaniya i ehksponentsial'no zatukhayuschie resheniya ehllipticheskoj zadachi v tsilindricheskoj oblasti // Zapiski nauchn. seminarov peterburg. otdeleniya matem. instituta RAN. 2000. T. 264. S. 66–82.

5. Nazarov S.A. Asimptotika sobstvennykh chisel na nepreryvnom spektre regulyarno vozmuschennogo kvantovogo volnovoda // Teoreticheskaya i matematicheskaya fizika. 2011. T. 167, 2. C. 239–262.

6. Vajnshtejn O.A. Teoriya difraktsii i metod faktorizatsii. M.: Sovetskoe radio, 1966.

7. Nazarov S.A. Anomalii rasseyaniya v rezonatore vyshe porogov nepreryvnogo spektra // Matem. sbornik. 2015. T. 206, 6. S. 15–48.

8. Korolkov A.I., Nazarov S.A., A. V. Shanin A.V. Stabilizing solutions at thresholds of the continuous spectrum and anomalous transmission of waves // // ZAMM. 2016. V. , . P.

9. Bulla W., Gesztesy F., Renrer W., Simon B. Weakly coupled bound states in quantum waveguides // Proc. Amer. Math. Soc. 1997. V. 125, 8. P. 1487–1495.

10. Gadyl'shin R.R. O lokal'nykh vozmuscheniyakh kvantovykh volnovodov // Teoreticheskaya i matematicheskaya fizika. 2005. T. 145, 3. S. 358–371.

11. Grushin V.V. O sobstvennykh znacheniyakh finitno vozmuschennogo operatora Laplasa v beskonechnykh tsilindricheskikh oblastyakh // Matem. zametki. 2004. T. 75, 3. S. 360–371.

12. Nazarov S.A. Variatsionnyj i asimptoticheskij metody poiska sobstvennykh chisel pod porogom nepreryvnogo spektra // Sibirsk. matem. zhurnal. 2010. T. 51, 5. S. 1086–1101.

13. Nazarov S.A. Prinuditel'naya ustojchivost' sobstvennogo znacheniya na nepreryvnom spektre volnovoda s prepyatstviem // Zhurnal vychisl. matem. i matem. fiz. 2012. T. 52, 3. C. 521-–538.

14. Nazarov S.A. Prinuditel'naya ustojchivost' prostogo sobstvennogo chisla na nepreryvnom spektre volnovoda // Funktsional'nyj analiz i ego prilozheniya. 2013. T. 47, 3. S. 37–53.

15. Nazarov S.A. Lokalizovannye uprugie polya v periodicheskikh volnovodakh s defektami // Prikladnaya mekhanika i tekhnicheskaya fizika. 2011. T. 52, 2. S. 183–194.

16. Nazarov S.A. Neotrazhenie i zakhvat uprugikh voln v slaboiskrivlennoj izotropnoj polose // Doklady RAN. 2014. T. 455, 2. S. 153-–157.

17. Nazarov S.A. Okoloporogovye ehffekty rasseyaniya voln v iskrivlennom uprugom dvumernom volnovode // Prikladnaya matem. i mekhanika. 2015. T. 79, 4. S. 530-–549.

18. Mandel'shtam L.I. Lektsii po optike teorii otnositel'nosti i kvantovoj mekhanike. Sb. trudov. T. 2. M.: Izd-vo AN SSSR, 1947.

19. Vorovich I.I., Babeshko V.A. Dinamicheskie smeshannye zadachi teorii uprugosti dlya neklassicheskikh oblastej. M.: Nauka, 1979.

20. Nazarov S.A. Usloviya izlucheniya Umova–Mandel'shtama v uprugikh periodicheskikh volnovodakh // Matem. sbornik. 2014. T. 205, 7. S. 43–72.

21. Umov N.A. Uravneniya dvizheniya ehnergii v telakh. Odessa: Tipogr. Ul'rikha i Shul'tse, 1874.

22. Poynting J. H. On the transfer of energy in the electromagnetic field // Phil. Trans. of the Royal Society of London, 1884, V. 175. P. 343–361.

23. Kozlov V.A., Nazarov S.A., Orlof A. Trapped modes supported by localized potentials in the zigzag graphene ribbon // C. R. Acad. Sci. Paris. Ser. 1. 2016. T. 354, 1. P. 63–67.

24. Van Dajk M.D. Metody vozmuschenij v mekhanike zhidkostej. M.: Mir, 1967.

25. Il'in A.M. Soglasovanie asimptoticheskikh razlozhenij reshenij kraevykh zadach. M.: Nauka, 1989.

26. Vishik M.I., Lyusternik L.A. Regulyarnoe vyrozhdenie i pogranichnyj sloj dlya linejnykh differentsial'nykh uravnenij s malym parametrom // Uspekhi matem. nauk. 1957. T. 12, 5. S. 3–122.

27. Mazja W.G., Nasarow S.A., Plamenewski B.A. Asymptotische Theorie elliptischer Randwertaufgaben in singular gestorten Gebieten. 1. Berlin: Akademie-Verlag. 1991. (Anglijskij perevod : Maz’ya V., Nazarov S., Plamenevskij B. Asymptotic theory of elliptic boundary value problems in singularly perturbed domains. Vol. 1. Basel: Birkhauser Verlag, 2000)

28. Kondrat'ev V.A. Kraevye zadachi dlya ehllipticheskikh uravnenij v oblastyakh s konicheskimi ili uglovymi tochkami // Trudy Moskovsk. matem. obschestva. 1963. T. 16. S. 219–292.

29. Maz'ya V.G., Plamenevskij B.A. O koehffitsientakh v asimptotike reshenij ehllipticheskikh kraevykh zadach v oblasti s konicheskimi tochkami // Math. Nachr. 1977. Bd. 76. S. 29–60.

30. Nazarov S.A. Properties of spectra of boundary value problems in cylindrical and quasicylindrical domains // Sobolev Spaces in Mathematics. V. II (Maz’ya V., Ed.) International Mathematical Series , Vol. 9. New York: Springer, 2008. P. 261–309.

31. Kato T. Teoriya vozmuschenij linejnykh operatorov. M.: Mir, 1972.

32. Polia G., Sege G. Izoperimetricheskie neravenstva v matematicheskoj fizike. M.: Fizmatgiz, 1962.

33. Guilope L. Theorie spctrale de quelques varietes a bouts // Ann. Sci. Ecole Norm. Sup. 1989. V. 22, 4. P. 137–160.

34. Aslanyan A., Parnovski L., Vassiliev D. Complex resonces ib acoustic waveguides // Q. J. Mech. Appl. Math. 2000. V. 53. P. 429–447.

35. Molchanov S., Vainberg B. Scattering solutions in networks of thin fibers: small diameter asymptotics // Comm. Math. Phys. 2007. V. 273, 2. P. 533–-559.

36. Grieser D. Spectra of graph neighborhoods and scattering // Proc. London Math. Soc. 2008. V. 97, 3. P. 718–752.

37. Pankrashkin K. Eigenvalue inequalities and absence of threshold resomamnces for waveguide junctions // J. of Math. Anal. and Appl. 2017. V. 449, 1. P. 907–925.

38. Nazarov S.A. Pochti stoyachie volny v periodicheskom volnovode s rezonatorom i okoloporogovye sobstvennye chisla // Algebra i analiz. 2016. T. 28, 3. S. 111–160.

Система Orphus

Loading...
Up