Monte Carlo methods for estimating the probability distributions of critical parameters for the process of particle transport in a randomly perturbed medium

 
PIIS004446690003541-6-1
DOI10.31857/S004446690003541-6
Publication type Article
Status Published
Authors
Affiliation: Inst. Mat. and mat. physical SB RAS
Address: Russian Federation, Novosibirsk
Journal nameZhurnal vychislitelnoi matematiki i matematicheskoi fiziki
EditionVolume 58 Issue 11
Pages1900-1910
Abstract

  

Keywords
AcknowledgmentThe work was carried out with partial financial support from RFBR grants (18–01–00599, 18–01–00356, 17–01–00823, 16–01–00530, 16–01–00145).
Received15.01.2019
Publication date15.01.2019
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 1096

Readers community rating: votes 0

1. Dehvison B. Teoriya perenosa nejtronov. – M.: Atomizdat, 1960, 514 s. [Davison B. Neutron transport theory. Oxford: Clarendon Press, 1957.]

2. Lotova G. Z., Mikhajlov G. A. Momenty parametrov kritichnosti protsessa perenosa chastits v sluchajnoj srede // 48, N12, S. 2225–2236 [Lotova G. Z., Mikhailov G. A. Moments of the Critical Parameters of the Transport of Particles in a Random Medium // Computational Mathematics and Mathematical Physics, V. 48, № 12, 2008, pp. 2254–2265]

3. Marchuk G. I., Mikhajlov G. A., Nazaraliev M. A. i dr. Metod Monte-Karlo v atmosfernoj optike. – Novosibirsk: Nauka, 1976, 283 s. [Marchuk G. I., Mikhailov G. A., Nazaraliev M. A., et al.: The Monte Carlo Method in Atmospheric Optics. Springer, Berlin Heidelberg (1980)]

4. Ershov Yu. I. Shikhov S. B. Matematicheskie osnovy teorii perenosa. T. 1. – M.: Ehnergoatomizdat, 1985.

5. Vladimirov V. S. O primenenii metoda Monte-Karlo dlya otyskaniya naimen'shego kharakteristicheskogo chisla i sootvetstvuyuschej sobstvennoj funktsii linejnogo integral'nogo uravneniya // Teoriya veroyatnostej i ee primenenie, 1956, T. 1, № 1, S. 113–130. [V. S. Vladimirov, Monte Carlo Methods as Applied to The Calculation of The Lowest Eigenvalue and the Associated Eigen-Function of a Linear Integral Equation // Theory Probab. Appl., v.1, № 1, pp.101–116, 1956.]

6. Kantorovich L. V., Akilov G. P. Funktsional'nyj analiz. – M.: Nauka. Glavnaya redaktsiya fiziko-matematicheskoj literatury, 1984. 752 s. [Kantorovich L. V., Akilov G. P. Functional analysis. 2nd ed. Pergamon Press, Oxford, XIV, 1982. 589 pp.]

7. Mikhajlov G. A. Ehffektivnye algoritmy metoda Monte-Karlo dlya vychisleniya korrelyatsionnykh kharakteristik uslovnykh matematicheskikh ozhidanij // Zh. vychisl. matem. i matem. fiz. 17, № 1 S. 246–249. [Mikhailov G. A. Efficient Monte Carlo algorithms for evaluating the correlation characteristics of conditional mathematical expectations // U.S.S.R. Comput. Math. Math. Phys., V. 17, № 1, 1977, pp. 244–247.]

8. Ermakov S. M., Mikhajlov G. A. Statisticheskoe modelirovanie. – M.: Nauka, 1982, 296 s.

9. Sobol' I. M. Chislennye metody Monte-Karlo. – M.: Nauka, 1973.

10. Ambos A. Yu., Mikhajlov G.A. Ehffektivnoe osrednenie stokhasticheskikh radiatsionnykh modelej na osnove statisticheskogo modelirovaniya // Zh. vychisl. matem. i matem. fiz.—2016. – T. 56, № 5. – S. 896–908. [Ambos A. Y., Mikhailov G. A. Effective averraging of stochastic radiative models based on Monte Carlo simulation // Comput.Math. Math.Phys. (2016), V. 56, Iss.5, pp. 881–893.]

11. Vilenkin N. Ya. Kombinatorika. – Moskva: Nauka, 1969, 328 s. [N. Ya. Vilenkin, Combinatorics, Academic Press, New York, 1971.]

12. Brednikhin S. A., Medvedev I. N., Mikhajlov G. A. Otsenka parametrov kritichnosti vetvyaschikhsya protsessov metodom Monte-Karlo // Zhurnal vychislitel'noj matematiki i matematicheskoj fiziki. 2010. T. 50. № 2. S. 362–374. [Brednikhin S. A., Medvedev I. N., Mikhailov G. A. Estimation of the criticality parameters of branching processes by the Monte Carlo method // Computational Mathematics and Mathematical Physics. 2010. V. 50. № 2. pp. 345–356.]

13. Ambos A. Yu. Vychislitel'nye modeli mozaichnykh odnorodnykh izotropnykh sluchajnykh polej i sootvetstvuyuschie zadachi perenosa izlucheniya // Sib. zhurn. vychisl. matem.—2016. – T. 19, № 1. – S. 19–32. [Ambos, A. Y. Numerical models of mosaic homogeneous isotropic random fields and problems of radiative transfer // Numerical Analysis and Applications, 2016, V. 9, № 1, pp. 12–23.]

14. Venttsel' E. S. Teoriya veroyatnostej. – M.: Nauka, 1969, 576 s. [Wentzel E. S. Probability theory. – Moscow: Nauka, 1969 (in Russian)]

15. Marchuk G. I. Metody raschyota atomnykh reaktorov. – M.: Atomnaya ehnergiya, 1961 [G. I. Marchuk, Methods of Calculating Nuclear Reactors, Gosatomizdat, Moscow (1961).(in Russian)]

16. Lotova G. Z., Mikhailov G. A. Estimates of the fluctuations of criticality parameters in the particle transport process in a random medium // Russ.J.Numer.Anal.Math.Modelling, Vol.19, No. 2, 2004, p. 173–183

17. Zolotukhin V. G., Majorov L. V. Otsenka parametrov kritichnosti reaktorov metodom Monte-Karlo. – M.: Ehnergoatomizdat, 1984.

18. Lotova G. Z., Mikhailov G. A. New Monte Carlo methods for the solution of nonstationary problems in the radiation transfer theory // Russ.J.Num. Anal.Math.Model., Vol.15, № 3–4, pp.285–295 (2000).

19. Lotova G. Z., Mikhajlov G. A. Novye metody Monte-Karlo dlya otsenki vremennykh zavisimostej v protsesse perenosa izlucheniya // ZhVMiMF, 2002, t. 42, N4, s. 570–580. [Lotova G. Z., Mikhailov G. A. New Monte Carlo methods for estimating time dependences in radiative transfer process // Computational Mathematics and Mathematical Physics. 2002. T. 42. № 4. S. 544–554.]

20. Romanov Yu. A. Tochnye resheniya odnoskorostnogo kineticheskogo uravneniya i ikh ispol'zovanie dlya rascheta diffuzionnykh zadach (usovershenstvovannyj diffuzionnyj metod) // Issledovanie kriticheskikh parametrov reaktornykh sistem. – M.: Gosatomizdat, 1960. – S. 3–26. [Romanov Yu. A. Exact solutions of one-velocity equation and their using for computations of the diffusion problems (imroved diffusion method) // Investigation of critical parameters of reactor systems, pp. 3–26. – Moscow, Gosatomizdat, 1960 (in Russian)]

Система Orphus

Loading...
Up