views: 1354
Readers community rating: votes 0
1. Dehvison B. Teoriya perenosa nejtronov. – M.: Atomizdat, 1960, 514 s. [Davison B. Neutron transport theory. Oxford: Clarendon Press, 1957.]
2. Lotova G. Z., Mikhajlov G. A. Momenty parametrov kritichnosti protsessa perenosa chastits v sluchajnoj srede // 48, N12, S. 2225–2236 [Lotova G. Z., Mikhailov G. A. Moments of the Critical Parameters of the Transport of Particles in a Random Medium // Computational Mathematics and Mathematical Physics, V. 48, № 12, 2008, pp. 2254–2265]
3. Marchuk G. I., Mikhajlov G. A., Nazaraliev M. A. i dr. Metod Monte-Karlo v atmosfernoj optike. – Novosibirsk: Nauka, 1976, 283 s. [Marchuk G. I., Mikhailov G. A., Nazaraliev M. A., et al.: The Monte Carlo Method in Atmospheric Optics. Springer, Berlin Heidelberg (1980)]
4. Ershov Yu. I. Shikhov S. B. Matematicheskie osnovy teorii perenosa. T. 1. – M.: Ehnergoatomizdat, 1985.
5. Vladimirov V. S. O primenenii metoda Monte-Karlo dlya otyskaniya naimen'shego kharakteristicheskogo chisla i sootvetstvuyuschej sobstvennoj funktsii linejnogo integral'nogo uravneniya // Teoriya veroyatnostej i ee primenenie, 1956, T. 1, № 1, S. 113–130. [V. S. Vladimirov, Monte Carlo Methods as Applied to The Calculation of The Lowest Eigenvalue and the Associated Eigen-Function of a Linear Integral Equation // Theory Probab. Appl., v.1, № 1, pp.101–116, 1956.]
6. Kantorovich L. V., Akilov G. P. Funktsional'nyj analiz. – M.: Nauka. Glavnaya redaktsiya fiziko-matematicheskoj literatury, 1984. 752 s. [Kantorovich L. V., Akilov G. P. Functional analysis. 2nd ed. Pergamon Press, Oxford, XIV, 1982. 589 pp.]
7. Mikhajlov G. A. Ehffektivnye algoritmy metoda Monte-Karlo dlya vychisleniya korrelyatsionnykh kharakteristik uslovnykh matematicheskikh ozhidanij // Zh. vychisl. matem. i matem. fiz. 17, № 1 S. 246–249. [Mikhailov G. A. Efficient Monte Carlo algorithms for evaluating the correlation characteristics of conditional mathematical expectations // U.S.S.R. Comput. Math. Math. Phys., V. 17, № 1, 1977, pp. 244–247.]
8. Ermakov S. M., Mikhajlov G. A. Statisticheskoe modelirovanie. – M.: Nauka, 1982, 296 s.
9. Sobol' I. M. Chislennye metody Monte-Karlo. – M.: Nauka, 1973.
10. Ambos A. Yu., Mikhajlov G.A. Ehffektivnoe osrednenie stokhasticheskikh radiatsionnykh modelej na osnove statisticheskogo modelirovaniya // Zh. vychisl. matem. i matem. fiz.—2016. – T. 56, № 5. – S. 896–908. [Ambos A. Y., Mikhailov G. A. Effective averraging of stochastic radiative models based on Monte Carlo simulation // Comput.Math. Math.Phys. (2016), V. 56, Iss.5, pp. 881–893.]
11. Vilenkin N. Ya. Kombinatorika. – Moskva: Nauka, 1969, 328 s. [N. Ya. Vilenkin, Combinatorics, Academic Press, New York, 1971.]
12. Brednikhin S. A., Medvedev I. N., Mikhajlov G. A. Otsenka parametrov kritichnosti vetvyaschikhsya protsessov metodom Monte-Karlo // Zhurnal vychislitel'noj matematiki i matematicheskoj fiziki. 2010. T. 50. № 2. S. 362–374. [Brednikhin S. A., Medvedev I. N., Mikhailov G. A. Estimation of the criticality parameters of branching processes by the Monte Carlo method // Computational Mathematics and Mathematical Physics. 2010. V. 50. № 2. pp. 345–356.]
13. Ambos A. Yu. Vychislitel'nye modeli mozaichnykh odnorodnykh izotropnykh sluchajnykh polej i sootvetstvuyuschie zadachi perenosa izlucheniya // Sib. zhurn. vychisl. matem.—2016. – T. 19, № 1. – S. 19–32. [Ambos, A. Y. Numerical models of mosaic homogeneous isotropic random fields and problems of radiative transfer // Numerical Analysis and Applications, 2016, V. 9, № 1, pp. 12–23.]
14. Venttsel' E. S. Teoriya veroyatnostej. – M.: Nauka, 1969, 576 s. [Wentzel E. S. Probability theory. – Moscow: Nauka, 1969 (in Russian)]
15. Marchuk G. I. Metody raschyota atomnykh reaktorov. – M.: Atomnaya ehnergiya, 1961 [G. I. Marchuk, Methods of Calculating Nuclear Reactors, Gosatomizdat, Moscow (1961).(in Russian)]
16. Lotova G. Z., Mikhailov G. A. Estimates of the fluctuations of criticality parameters in the particle transport process in a random medium // Russ.J.Numer.Anal.Math.Modelling, Vol.19, No. 2, 2004, p. 173–183
17. Zolotukhin V. G., Majorov L. V. Otsenka parametrov kritichnosti reaktorov metodom Monte-Karlo. – M.: Ehnergoatomizdat, 1984.
18. Lotova G. Z., Mikhailov G. A. New Monte Carlo methods for the solution of nonstationary problems in the radiation transfer theory // Russ.J.Num. Anal.Math.Model., Vol.15, № 3–4, pp.285–295 (2000).
19. Lotova G. Z., Mikhajlov G. A. Novye metody Monte-Karlo dlya otsenki vremennykh zavisimostej v protsesse perenosa izlucheniya // ZhVMiMF, 2002, t. 42, N4, s. 570–580. [Lotova G. Z., Mikhailov G. A. New Monte Carlo methods for estimating time dependences in radiative transfer process // Computational Mathematics and Mathematical Physics. 2002. T. 42. № 4. S. 544–554.]
20. Romanov Yu. A. Tochnye resheniya odnoskorostnogo kineticheskogo uravneniya i ikh ispol'zovanie dlya rascheta diffuzionnykh zadach (usovershenstvovannyj diffuzionnyj metod) // Issledovanie kriticheskikh parametrov reaktornykh sistem. – M.: Gosatomizdat, 1960. – S. 3–26. [Romanov Yu. A. Exact solutions of one-velocity equation and their using for computations of the diffusion problems (imroved diffusion method) // Investigation of critical parameters of reactor systems, pp. 3–26. – Moscow, Gosatomizdat, 1960 (in Russian)]