views: 1476
Readers community rating: votes 0
1. Kutateladze S. S. Teploperedacha pri kondensatsii i kipenii. M.: Mashgiz, 1952. 236 s.
2. Jeong Y. H., Chang W. J., Chang S. H. Wettability of Heated Surfaces under Pool Boiling Using Surfactant Solutions and Nano-fluids // Int. J. Heat Mass Transfer. 2008. № 51. P. 3025.
3. Kim S. J., Buongiorno J., Hu L. W., Bang I. C. Surface Wettability Change During Pool Boiling of Nanofluids and its Effect on Critical Heat Flux // Int. J. Heat Mass Transfer. 2007. № 50. P. 4105.
4. Terekhov V. I., Kalinina S. V., Lemanov V. V. Mekhanizm teploperenosa v nanozhidkostyakh: sovremennoe sostoyanie problemy (obzor). Ch. 2. Konvektivnyj teploobmen // Teplofizika i aehromekhanika. 2010. T. 17. № 2. S. 173.
5. Isachenko V. P., Osipova V. A., Sukomel A. S. Teploperedacha. M.: Ehnergiya, 1969. 440 s.
6. Dmitriev A. S. Teplofizicheskie problemy nanoehnergetiki. Ch. 2 // Teploehnergetika. 2011. № 4. S. 29.
7. Popov I. A., Schelchkov A. V., Gortyshov Yu. F., Zubkov N. N. Intensifikatsiya teplootdachi i kriticheskie teplovye potoki pri kipenii na poverkhnostyakh s mikroorebreniem // TVT. 2017. T. 55. № 4. S. 537.
8. Kuzma-Kichta Yu.A., Lavrikov A. V., Shustov M. V. Intensifikatsiya teploobmena pri kipenii na poverkhnostyakh s mikro – i nanorel'efom // Tr. V ros. nats. konf. po teploobmenu. T. 1. M.: Izd-vo MEhI, 2010. S. 211.
9. Yashnov V. I. Vliyanie smachivaemosti poverkhnosti nagreva na krizis kipeniya // Krizis kipeniya i temperaturnyj rezhim isparitel'nykh poverkhnostej nagreva. Tr. TsKTI. 1965. № 58. S. 78.
10. Kim S. J., Truong B., Buongiorno J., Hu L. W., Bang I. C. Study of Two-Phase Heat Transfer in Nanofluids for Nuclear Application // Proc. ICAPP’06. Paper 6005. Reno, NV USA, 2006. P. 1573.
11. Vasil'ev N. V., Varaksin A. Yu., Zejgarnik Yu. A., Khodakov K. A., Ehpel'fel'd A. V. Kharakteristiki kipeniya vody, nedogretoj do temperatury nasyscheniya, na strukturirovannykh poverkhnostyakh // TVT. 2017. T. 55. № 6. S. 712.
12. Bang I. Ch., Chang S. H. Boiling Heat Transfer Performance and Phenomena of Al2O3 – Water Nano-Fluids from a Plain Surface in a Pool // Int. J. Heat Mass Transfer. 2005. № 48. P. 2407.
13. Buongiorno J., Coyle C., McKrell Th. Synthesis of CRUD and its Effect on Pool and Subcooled Flow Boiling // CASL L3 Milestone Report. US Department of Energy. March 2015. 11 p.
14. Kuzma-Kichta Yu.A., Lavrikov A. V., Shustov M. V., Chursin P. S., Chistyakova A. V., Zvonarev Yu. A., Zhukov V. M., Vasil'eva L. T. Issledovanie intensifikatsii teploobmena pri kipenii vody na poverkhnosti s mikro – i nanorel'efom // Teploehnergetika. 2014. № 3. S. 35.
15. Sanjo George C., Krishnakumar T. S. An Experimental Investigation on the Enhancement of Forced Convection Heat Transfer Using TiO2 – Water Nanofluids in Turbulent Regime // Proc. Int. Conf. on Energy and Environment – 2013 (ICEE2013). V. 2. Spec. Iss. 1. Kottayam, Kerala, India, 2013. P. 598.
16. Rach S., Patel P., Dr. Deore D. A. Heat Transfer Enhancement in Shell and Tube Heat Exchanger by Using Iron Oxide Nanofluid // Int. J. Eng. Dev. Res. 2014. V. 2. № 2. P. 2422.
17. Sharma S., Gupta A. K. Numerical Simulation of Heat Transfer of Nanofluids in an Enclosure // 7th Int. Conf. on CFD in the Minerals and Process Industries. Melbourne, Australia, 2009. P. 1.
18. Labuntsov D. A., Yagov V. V. Mekhanika dvukhfaznykh sistem. Ucheb. posob. dlya vuzov. M.: Izd-vo MEhI, 2000. 374 s.