Spontaneous and stimulated CD25 expression on T-lymphocytes and the amount of regulatory T-cells in children with chronic hepatitis C

Publication type Article
Status Published
Regional Children’s Clinical Hospital № 1
Institute of Immunology and Physiology, Urals Branch of the Russian Acad. Sci.
Journal nameRossiiskii immunologicheskii zhurnal
EditionVolume 12 Issue 3

Children of 6–17 years old with viral chronic hepatitis C (n=24) and conditionally healthy controls of corresponding age (n=32) were examined. The amount of CD3+CD25+, CD4+CD25+ и CD8+CD25+ and regulatory T-cells (Treg, CD3+CD4+CD25+CD127low/neg) were investigated by fl ow cytometry. In children with chronic hepatitis C the number of phytohemagglutinin-stimulated CD3+CD25+, CD4+CD25+ and Treg was decreased, the amount of CD8+CD25+ in conditions of stimulation by antibodies to CD3 and combined stimulation by antibodies to CD3 and CD28 was too decreased.

Keywordshepatitis C, lymphocytes, fl ow cytometry, Treg
Publication date12.01.2019
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 1017

Readers community rating: votes 0

1. Akhtar F., Rehman S. A. Public Health Analysis on Gaps in Disease Monitoring and Opportunities for Improved Care for the Management of Hepatitis B and C. Cureus. 2018, 16;10 (1): e2077.

2. Chacha S. G. F., Rodrigues J. P. V., Araujo R. C., Pereira L. R. L., Villanova M. G., Souza F. F., de Carvalho Santana R., de Lourdes Candolo Martinelli A. Firstwave protease inhibitors for hepatitis C genotype 1 treatment: a real-life experience in Brazilian patients. Rev. Soc. Bras. Med. Trop. 2018, 51(2), 146–154.

3. Hall E. W., Rosenberg E. S., Sullivan P. S. Estimates of state-level chronic hepatitis C virus infection, stratifi ed by race and sex, United States, 2010. BMC Infectious Diseases 2018, 18:224.

4. Fenoglio D., Dentone C., Signori A. Di Biagio A., Parodi A., Kalli F., Nasi G., Curto M., Cenderello G., De Leo P., Bartolacci V., Orofi no G., Nicolini L. A., Taramasso L., Fiorillo E., Orru V., Traverso P., Bruzzone B., Ivaldi F., Mantia E., Guerra M., Negrini S., Giacomini M., Bhagani S., Filaci G. CD8+CD28–CD127loCD39+ regulatory T-cell expansion: A new possible pathogenic mechanism for HIV infection? Allergy Clin. Immunol. 2017, 28. pii: S0091–6749(17)31474–4.

5. Rios D. A., Valva P., Casciato P. C., Frias S., Caldirola M. S., Gaillard M. I., Bezrodnik L., Bandi J., Galdame O., Ameigeiras B., Krasniansky D., Brodersen C., Mullen E., De Matteo E. N., Preciado M. V. Chronic hepatitis C liver microenvironment: role of the Th17/ Treg interplay related to fi brogenesis. Scientifi c Reports 2017, 16, 7(1):13283.

6. Sakaguchi S. Regulatory T Cells: History and Perspective. Methods in Molecular Biology 2011, 707, 3–17.

7. Ishigame H., Zenewicz L. A., Sanjabi S., Licona-Limona P., Nakayama M., Leonard W. J., Flavell R. A. Th1 responses due to the absence of TGF-? signaling cause autoimmune diabetes and dysregulated Treg cell homeostasis. PNAS2013, 110, 6961–6966.

8. Fazekas de StGroth B., Zhu E., Asad S., Lee L. Flow cytometric detection of human regulatory T cells. Methods and protocols in Molecular Biology 2011, 707, 273–279.

9. Moorman J. P., Wang J. M., Zhang Y., Ji X. J., Ma C. J., Wu X. Y., Jia Z. S., Wang K. S., Yao Z. Q. Tim-3 Pathway Controls Regulatory and Eff ector T Cell Balance during Hepatitis C Virus Infection. The Journal of Immunology 2012, 189, 755–766.

10. Yoshizawa K., Abe H., Kubo Y., Kitahara T., Aizawa R., Matsuoka M., Aizawa Y. Expansion of CD4+CD25+ FoxP3+ regulatory T cells in hepatitis C virus – related chronic hepatitis, cirrhosis and hepatocellular carcinoma. Hepatology Research 2010, 40, 179–187.

11. Aggan H. A. E., Farahat N., Younis L., ElYamany A., Mostafaet D. The Balance Between T Helper 17 And Foxp3+ T Regulatory Cells In Patients With Chronic Hepatitis C: Relation To Disease Activity And Hepatic Fibrosis. Gut 2012, 61, http://gut.bmj.com/content/61/Suppl_2/A29.1.full.pdf+html.

12. Goncalves L., Albarran B., Salmen S., Borges L., Fields H., Montes H., Soyano A., Diaz Y., Berrueta L. The nonresponse to hepatitis B vaccination is associated with impaired lymphocyte activation. Virology 2004, 326, 20–28.

13. Sel'kova M. S., Selyutin A. V., Sel'kov S. A. Osobennosti soderzhaniya T-regulyatornykh limfotsitov i NK-kle tok u patsientov s khronicheskim gepatitom S. Infektsiya i immunitet 2012, 2, 4, 715–722. [Selkova M. S., Selutin A. V., Selkov S. A. Patterns of regulatory T-cells and NK-cells levels in patients with hepatitis C virus infection. Infekc. Immun. 2012, 2, 4, 715–722].

14. Pan X., Mao Y., Zhu L., Li J., Xie Y., Wang L., Zhang G.-B. Changes of regulatory T cells and FoxP3 gene expression in the aging process and its relationship with lung tumors in humans and mice. Chin. Med. J. 2012, 125 (11), 2004–2011.

15. Coomes S. M., Pelly V. S., Wilson M. S. Plasticity within the ab+CD4+ T–cell lineage: when, how and what for? Open Biol 2013, 3, 120–157.

16. Cosmi L., Liotta F., Lazzeri E., Francalanci M., Angeli R., Mazzinghi B., Santarlasci V., Manetti R., Vanini V., Romagnani P., Maggi E., Romagnani S., Annunziato F. Human CD8+CD25+ thymocytes share phenotypic and functional features with CD4+CD25+ regulatory thymocytes. Blood 2003, 102, 4107–4114.

17. Chaput N., Louafi S., Bardier A., Charlotte F., Vaillant J.-C., Menegaux F., Rosenzwajg M., Lemoine F., Klatzmann D., Taieb J. Identifi cation of CD8+CD25+ Foxp3+ suppressive T cells in colorectal cancer tissue. Gut 2009, 58, 520–529.

18. Kmieciak D. M., Gowda M., Graham L., Godder K., Bear H. D., Marincola F. M., Manjili M. H. Human T cells express CD25 and Foxp3 upon activation and xhibit eff ector/memory phenotypes without any regulatory/ suppressor function. Journal of Translational Medicine 2009, 7, http://www.translational-medicine. com/content/7/1/89.

Система Orphus