Mathematical Model of the Biological Environment, Taking into Account the Active Interactions and Mutual Movements of its Constituent Cells

 
PIIS056852810001775-3-1
DOI10.31857/S056852810001775-3
Publication type Article
Status Published
Authors
Affiliation:
Journal nameIzvestiia Rossiiskoi akademii nauk. Mekhanika zhidkosti i gaza
EditionIssue 5
Pages3-16
Abstract

   

Keywords
Received17.10.2018
Publication date24.11.2018
Number of characters1175
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 362

Readers community rating: votes 0

1. Armstrong N. J., Painter K. J., Sherratt J. A. A continuum approach to modelling cell–cell adhesion // J. Theor. Biol. 2006. V. 243. № 1. P. 98–113.

2. Domschke P., Trucu D., Gerisch A., Chaplain M. Mathematical modelling of cancer invasion: Implications of cell adhesion variability for tumour infiltrative growth patterns // J. Theor. Biol. 2014. V. 361. P. 41–60.

3. Gerisch A., Chaplain M. A.J. Mathematical modelling of cancer cell invasion of tissue: Local and nonlocal models and the effect of adhesion // J. Theor. Biol. 2008. V. 250. № 4. P. 684–704.

4. Painter K. J., Armstrong N. J., Sherratt J. A. The impact of adhesion on cellular invasion processes in cancer and development // J. Theor. Biol. 2010. V. 264. № 3. P. 1057–1067.

5. Preziosi L., Tosin A. Multiphase modeling of tumor growth and extracellular matrix interaction: Mathematical tools and applications // J. Math. Biol. 2009. V. 58. P. 625–656.

6. Arduino A., Preziosi L. A multiphase model of tumour segregation in situ by a heterogeneous extracellular matrix // Internat. J. Non-lin. Mech. 2015. V. 75. P. 22–30.

7. Giverso C, Scianna M, Grillo A. Growing avascular tumours as elasto-plastic bodies by the theory of evolving natural configurations // Mech. Res. Commun. 2015. V. 68. P. 31–39.

8. Jackson T. L., Byrne H. M. A mechanical model of tumor encapsulation and transcapsular spread // Math. Biosciences. 2002. V. 180. P. 307–328.

9. Byrne H., Preziosi L. Modelling solid tumour growth using the theory of mixtures // Math. Med. Biol. 2003. V. 20. P. 341–366.

10. Green J. E., Waters S. L., Shakesheff K. M., Byrne H. M. A mathematical model of liver cell aggregation in vitro // Bull. Math. Biol. 2009. V. 71. P. 906–930.

11. Lemon G., King J. R., Byrne H. M., Jensen O. E., Shakesheff K. M. Mathematical modelling of engineered tissue growth using a multiphase porous flow mixture theory // J. Math. Biol. 2006. V. 52. P. 571–594.

12. O’Dea R. D., Waters S. L., Byrne H. M. A multiphase model for tissue construct growth in a perfusion bioreactor // Math. Med. Biol. 2010. V. 27. № 2. P. 95–127.

13. Oster G. F., Murray J. D., Harris A. K. Mechanical aspects of mesenchymal morphogenesis // J. Embriol. Exp. Morph. 1983. V. 78. P. 83–125.

14. Dyson R. J., Green J. E.F., Whiteley J. P., Byrne H. M. An investigation of the influence of extracellular matrix anisotropy and cell–matrix interactions on tissue architecture // J. Math. Biol. 2016. V. 72. № 7. P. 1775–1809.

15. Davidson L. A., Joshi S. D., Kim H. Y., Dassow M., Zhang L., Zhou J. Emergent morphogenesis: elastic mechanics of a self-deforming tissue // J. Biomech. 2010. V. 43. № 1. P. 63–70.

16. Belousov L. V., Logvenkov S. A., Shtejn A. A. Matematicheskaya model' aktivnoj biologicheskoj sploshnoj sredy s uchetom deformatsij i pereupakovki kletok // Izv.RAN. MZhG. 2015. №№ 1. S. 3–14.

17. Logvenkov S. A., Shtejn A. A. Matematicheskaya model' prostranstvennoj samoorganizatsii v mekhanicheski aktivnoj kletochnoj srede // Biofizika. 2017. T. 6. № 2. S. 1123–1133.

18. Kizilova N. N., Logvenkov S. A., Shtejn A. A. Matematicheskoe modelirovanie transportno-rostovykh protsessov v mnogofaznykh biologicheskikh sploshnykh sredakh // Izv. RAN. MZhG. 2012. № 1. S. 3–13.

19. Tracqui P. Biophysical models of tumour growth // Rep. Prog. Phys. 2009. V. 72. № 5. P. 056701.

20. Vlahinic I., Jennings H. M., Andrade J. E., Thomas J. J. A novel and general form of effective stress in a partially saturated porous material: The influence of microstructure // Mech. Mater. 2011. V. 43. P. 25–35.

21. Nigmatulin R. I. Osnovy mekhaniki geterogennykh sred. M: Nauka, 1978. 336 s.

22. Drew D. A., Segel L. A. Averaged equations for two-phase flows // Stud. Appl. Math. 1971. V. 50. № 3. P. 205–231.

23. Samarskij A. A. Teoriya raznostnykh skhem // M.: Nauka, 1977. 656 s.

24. Samarskij A. A., Vabischevich P. N. Raznostnye skhemy dlya uravneniya perenosa // Dif. uravn. 1998. T. 34. № 12. S. 1675–1685.

25. Gerhart J. C. Mechanisms regulating pattern formation in the amphibian egg and early embryo // In: Biological Regulation and Development, Goldberger R. (ed), New York: Plenum Press, 1980. V. 2. P. 133–316.

26. White M. D., Zenker J., Bissiere S., Plachta N. How cells change shape and position in the early mammalian embryo // Curr. Opin. Cell Biol. 2017. V. 44. P. 7–13.

27. Fierro-Gonzalez J.C., White M. D., Silva1 J.C., Plachta N. Cadherin-dependent filopodia control preimplantation embryo compaction // Nat. Cell. Biol. 2013. V.15. № 12. P. 1424–1433.

28. Fleming T. P., Butler E., Collins J., Sheth B., Wild A. E. Cell polarity and mouse early development // Adv. Mol. and Cell Biol. 1998. V. 26. P. 67–94.

29. Gilbert S. F. Developmental Biology/ 6th Ed. Sunderland, Mass.: Sinauer Associates, 2000. 749 p.

Система Orphus

Loading...
Up