Molecular-biochemical aspects of eucariotes ontogenesis in the conditions of global warming

 
PIIS250026270000540-9-2
DOI10.31857/S250026270000540-9
Publication type Article
Status Published
Authors
Affiliation: Nikolaev National Agrarian University
Address: Ukraine, Kiev
Affiliation: Nikolaev National Agrarian University
Address: Ukraine, Kiev
Affiliation: Kiev City Ophthalmological Clinical Hospital, Center for Eye Microsurgery
Address: Ukraine, Kiev
Affiliation: Nikolaev National Agrarian University
Address: Ukraine, Nikolaev
Journal nameRossiiskaia selskokhoziaistvennaia nauka
EditionNumber 4
Pages50-53
Abstract

Global warming is an irreversible process that leads to a deterioration in the living conditions of living organisms, including the main agricultural species that play a significant role in human nutrition. There are so-called factors σ32 E.coli which is embedded in the RNA-thermometer in the λ cIII gene, this factor plays a significant role in the regulation of bacteria at elevated temperatures. The expression of heat and cold shock and some virulence genes is coordinated by the genome in response to a change in temperature. A number of RNA-thermometers are known that differ in structural and functional control of a variety of cellular processes. The most common RNA-thermometer is the ROSE element, which suppresses the expression of heat shock genes. A common feature of all ROSE elements is the presence of the G residue of the opposite SD sequence, since this nucleotide is functionally important, and its elimination makes the thermometer immune to high temperatures. A sequence of molecular level (RNA-thermometers) has been established whose chemical compounds influence the regulation of the homeostasis temperature, namely enzymes. Although the results obtained for RNA-thermometers were on microorganisms, there is a real prospect at the molecular level to alter the genome of the animal, namely the insertion of these sequences, or the cultivation of symbiotic microorganisms that can be used in biotechnologies for the production of biologically active substances that, at elevated ambient temperatures can reduce the negative impact of high temperatures on living organisms.

 

KeywordsGlobal warming, RNA-thermometers, DNA, RNA, enzymes
Received17.08.2018
Publication date30.09.2018
Number of characters1559
Cite   Download pdf To download PDF you should sign in
Previous versionsS250026270000540-9-1  Дата внесения правок в статью - 30.09.2018
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 2080

Readers community rating: votes 0

1. Gorbatenko І.Yu., Tischenko M.G. Reaktsіya rіznikh statevo-vіkovikh grup svinej na dіyu temperaturnogo faktoru v umovakh global'nogo poteplіnnya / Gorbatenko І.Yu., Tischeko M.G. //Odes'kij agrarnij unіversitet. Agrarnij vіsnik Prichornomor'ya, vipusk 68, 2013. - s. 68-72.

2. Gorbatenko І.Yu., Tischenko M.G. Deyakі aspekti selektsіjno-genetichnikh doslіdzhen' u ssavtsіv na prikladі svinі pri global'nomu poteplіnnі / Gorbatenko І.Yu., Tischeko M.G. //Zbіrnik naukovikh prats' "Natsіonal'nij naukovo-selektsіjnij genetichnij tsentr z vіvcharstva" Askanіya-Nova. 2014, 7,s. 120-125.

3. Morita M.T. Translational induction of heat shock transcription factor σ32:evidence for a built-in RNA thermosensor/ Morita M.T. [et al.]// Genes Dev. – 1999. – Vol. 13, №6. – P. 655-665.

4. Altuvia, S. Kornitzer D., Teff D. & Oppenheimer A.B. (1989) Alternative mRNA structures of the cIII gene of bacteriophage λ determine the rate of its translation initiation. J Mol Biol 210: 265-280.

5. Narberhaus, F. RNA thermometers / Narberhaus F., Waldminghaus T., Chowdhury S. //FEMS Microbiol Rev. – 2006. – Vol. 30. – P. 3-16.

6. Altuvia, S. Kornitzer D., Kobi S. & Oppenheimer A.B. (1991) Functional and structural elements of the mRNA of the cIII gene of bacteriophage lambda. J Mol Biol 218: 723-733.

7. Gorbatenko І.Yu. Perspektivi vikoristannya metodіv molekulyarnoї bіologії v selektsії svinej v umovakh global'nogo poteplіnnya / Gorbatenko І.Yu. //Svinarstvo, vipusk 65, 2014. s.108-111.

8. NockerA., HausherrT., BalsigerS., KrstulovicN.PHenneckeH. & NarberhausF (2001a) mRNAbasedthermosensorcontrolsexpression of rhizobial heat shock genes. Nucleic Acids Res. 29: 4800-4807.

9. Sledjeski DD, Gupta A & Gottesman S. (1996) The small RNA, DsrA, is essential for the lowtemperature expression of the RpoS during exponential growth in Escherichia coli. EMBO J 15: 3993-4000.

10. Repoila F., Majdalani N & Gottesman S. (2003) Small non-coding RNA’s, co-ordinators of adaptation processes in E.coli: the RpoS paradigm. Mol Microbiol 48: 855-861.

11. Waldminghaus T. Genome-wide bioinformatic prediction and experimental evaluation of potential RNA thermometers [Text] / Waldminghaus T., Gaubig L.C., Narberhaus F. // Mol. Genet. Genomics. - 2007. - Vol. 278. - P. 555-564.

12. Neupert J. Design of simple synthetic RNA thermometers for temperature-controlled gene expression in Escherichia coli [Text] / Neupert J., Karcher D., Bock R. // Nucleic Acids Res. - 2006. - Vol. 36, № 19. - P. el24.

13. Wieland M. RNA quadruplex-based modulation of gene expression [Text] / Wieland M., Harti J.S. g // Chem. Biol. - 2007. - Vol. 14, № 7. - P. 757-763.

14. Johansson J., Mandin P., Renzoni A., Chiaruttini C. Springer M. & Cossart P. (2002) An RNA thermosensor controls expression of virulence genes in Listeria monocytogenes. Cell 110: 551-561.

15. Hoe NP & Goguen JD (1993) Temperature sensing in Yersinia pestis: translation of the LcrF activator protein is thermally regulated. J. Bacteriol 175: 7901-7909.

Система Orphus

Loading...
Up