Новые подходы к созданию иммуногена для ВИЧ-вакцины

 
Код статьиS0032874X0002319-9-1
DOI10.31857/S0032874X0002319-9
Тип публикации Статья
Статус публикации Опубликовано
Авторы
Аффилиация:
Институт вирусологии имени Д.И.Ивановского, Национальный исследовательский центр эпидемиологии и микробиологии имени Н.Ф.Гамалеи Минздрава России
Биологический факультет Московского государственного университета имени М.В.Ломоносова
Адрес: Российская Федерация, Москва
Название журналаПрирода
ВыпускВыпуск №11
Страницы3-11
Аннотация

Наиболее эффективно блокировать вне- и внутриклеточный ВИЧ способны антитела к консервативным (неизменным у большинства изолятов ВИЧ) эпитопам, распложенным на поверхностном гликопротеине Env. На основе Env-тримеров разработана многоступенчатая стратегия по дизайну новых иммуногенов, которая основана на данных, полученных при изучении механизмов ускользания ВИЧ от иммунного ответа. С помощью модификации цитоплазматического домена удалось получить стабилизированные тримеры с «открытой» формой, обычно образующейся у нативного тримера Env после связывания с рецептором CD4 в труднодоступных для нейтрализующих антител эндосомах внутри клеток. Следующая модификация трансмембранного домена в комбинации с коротким цитоплазматическим хвостом усиливала включение Env-тримеров в вирусоподобные частицы (VLP). Новые иммуногены на основе VLP способны индуцировать защитные высокоавидные и нейтрализующие антитела широкого спектра действия и обладают большим потенциалом для разработки ВИЧ-вакцины.

Ключевые словаВИЧ, нейтрализующие антитела широкого спектра действия, защитные ненейтрализующие антитела, Env-тримеры, дизайн иммуногена
Получено06.12.2018
Дата публикации11.12.2018
Цитировать   Скачать pdf Для скачивания PDF необходимо авторизоваться
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной.

всего просмотров: 1155

Оценка читателей: голосов 0

1. Parsons M.S., Lloyd S.B., Lee W.S. et al. Partial efficacy of a broadly neutralizing antibody against cell-associated SHIV infection. Sci. Transl. Med. 2017; 9(402): eaaf1483. Doi:10.1126/scitranslmed.aaf1483.

2. Hessell A.J., Poignard P., Hunter M. et al. Effective, low-titer antibody protection against low-dose repeated mucosal SHIV challenge in macaques. Nat. Med. 2009; 15(8): 951–954. Doi:10.1038/nm.1974.

3. Robinson H.L. Non-neutralizing antibodies in prevention of HIV infection. Expert. Opin. Biol. Ther. 2013; 13(2):197–207. Doi:10.1517 / 14712598.2012.743527.

4. Взоров А.Н., Урываев Л.В. Критерии для индукции нейтрализующих антител широкого спектра действия против ВИЧ-1 с помощью вакцинации. Молекуляр. биол. 2017; 51(6): 945–957. Doi:10.7868/S0026898417060076.

5. Manrique A., Adams E., Barouch D.H. et al. The immune space: a concept and template for rationalizing vaccine development. AIDS Res. Hum. Retroviruses. 2014; 30(11):1017–1022. Doi:10.1089/AID.2014.0040.

6. Havenar-Daughton C., Carnathan D.G., Torrents de la Pena A. et al. Direct probing of germinal center responses reveals immunological features and bottlenecks for neutralizing antibody responses to HIV Env trimer. Cell Rep. 2016; 17(9):2195–2209. Doi:10.1016/j.celrep.2016.10.085.

7. Haynes B.F., Kelsoe G., Harrison S.C., Kepler T.B. B-cell-lineage immunogen design in vaccine development with HIV-1 as a case study. Nat. Biotechnol. 2012; 30: 423–433. Doi:10.1038 / nbt.2197.

8. Cheeseman H.M., Olejniczak N.J., Rogers P.M. et al. Broadly neutralizing antibodies display potential for prevention of HIV-1 infection of mucosal tissue superior to that of nonneutralizing antibodies. J. Virol. 2017, 91(1): e01762-16. Doi:10.1128 / JVI.01762-16.

9. Mabuka J., Nduati R., Odem-Davis K. et al. HIV-specific antibodies capable of ADCC are common in breastmilk and are associated with reduced risk of transmission in women with high viral loads. PLoS Pathog. 2012; 8(6): e1002739. Doi:10.1371/journal.ppat.1002739.

10. Alexander M.R., Sanders R.W., Moore J.P., Klasse P.J. Short communication: virion aggregation by neutralizing and nonneutralizing antibodies to the HIV-1 envelope glycoprotein. AIDS Res. Hum. Retroviruses. 2015; 31(11): 1160–1165. Doi:10.1089/aid.2015.0050.

11. Kwong P.D. What are the most powerful immunogen design vaccine strategies? A Structural biologist’s perspective. Cold Spring Harb. Perspect. Biol. 2017; 9 (11): a029470. Doi:10.1101 / cshperspect.a029470.

12. Visciano M.L., Tuen M., Gorny M.K., Hioe C.E. In vivo alteration of humoral responses to HIV-1 envelope glycoprotein gp120 by antibodies to the CD4-binding site of gp120. Virology. 2008; 372(2): 409–420. Doi:10.1016/j.virol.2007.10.044.

13. Pugach P., Ozorowski G., Cupo A. et al. A native-like SOSIP.664 trimer based on an HIV-1 subtype B env gene. J. Virol. 2015; 89(6): 3380–3395. Doi:10.1128/JVI.03473-14.

14. Jones A.T., Chamcha V., Kesavardhana S. et al. A trimeric HIV-1 envelope gp120 immunogen induces potent and broad anti-V1V2 loop antibodies against HIV-1 in rabbits and rhesus macaques. J. Virol. 2018; 92(5): e01796-17. Doi:10.1128/JVI.01796-17.

15. Vzorov A.N., Wang L., Chen J. et al. Effects of modification of the HIV-1 Env cytoplasmic tail on immunogenicity of VLP vaccines. Virology. 2016; 489:141–150. Doi:10.1016/j.virol.2015.09.015.

16. Взоров А.Н., Компанс Р. Вакцины против ВИЧ на основе вирусоподобных частиц и влияние модификаций в белке Env на их антигенные свойства. Молекуляр. биол. 2016; 50(3): 406–415. Doi:10.7868/S0026898416030113.

17. Vzorov A.N., Compans R.W. Cytoplasmic domain effects on exposure of co-receptor-binding sites of HIV-1 Env. Arch Virol 2016; 161(11): 3011–3018. Doi:10.1007/s00705-016-2998-1.

18. Vzorov A.N., Compans R.W. Effects of stabilization of the gp41 cytoplasmic domain on fusion activity and infectivity of SIVmac239. AIDS Res. Hum. Retroviruses 2011; 27(11): 1213–1222. Doi:10.1089/AID.2010.0321.

19. Vzorov A.N., Bukrinsky M.I., Grigoriev V.B. et al. Highly immunogenic human immunodeficiency viruslike particles are produced by recombinant vaccinia virus-infected cells. AIDS Res. Hum. Retroviruses. 1991; 7(1): 29–36. Doi:10.1089/aid.1991.7.29.

20. Взоров А.Н., Тенцов Ю.Ю., Григорьев В.Б. и др. Образование вирусоподобных частиц белков Gag ВИЧ-1, экспрессируемых рекомбинантным вирусом осповакцины. Молекуляр. биол. 1990; 24(6): 1666–1674.

21. Vassilieva E.V., Wang B.Z., Vzorov A.N. et al. Enhanced mucosal immune responses to HIV virus-like particles containing a membrane-anchored adjuvant. MBio. 2011; 2(1): e00328-10. Doi:10.1128/mBio.00328-10.

22. Skountzou I., Quan F.S., Gangadhara S. et al. Incorporation of glycosylphosphatidylinositol-anchored granulocyte-macrophage colony-stimulating factor or CD40 ligand enhances immunogenicity of chimeric simian immunodeficiency virus-like particles. J. Virol. 2007; 81(3): 1083–1094. Doi:10.1128/JVI.01692-06.

Система Orphus

Загрузка...
Вверх