Исследование сплавных омических контактов к эпитаксиальным слоям арсенида галлия, легированных теллуром

 
Код статьиS054412690002769-2-1
DOI10.31857/S054412690002769-2
Тип публикации Статья
Статус публикации Опубликовано
Авторы
Аффилиация: Московский институт электронной техники
Адрес: Российская Федерация
Аффилиация: Московский институт электронной техники
Адрес: Российская Федерация
Аффилиация: Московский институт электронной техники
Адрес: Российская Федерация
Аффилиация: Московский институт электронной техники
Адрес: Российская Федерация
Аффилиация: ФТИ им. А.Ф. Иоффе
Адрес: Российская Федерация
Аффилиация: ФТИ им. А.Ф. Иоффе
Адрес: Российская Федерация
Название журналаМикроэлектроника
ВыпускТом 47 6
Страницы431-435
Аннотация

Рассмотрены условия роста эпитаксиальных слоёв и исследован уровень сопротивления сплавных омических контактов к слоям арсенида галлия, легированных теллуром. Использование в качестве сплавных омических контактов состава (AuGe эвтектический сплав) – Ni–Au к слоям арсенида галлия электронного типа проводимости, в том числе применение в качестве контактного слоя узкозонного (In0.5Ga0.5As) позволяет достигать сопротивления в лучших случаях около 10-7 Ом ⋅ см2, но это приводит к ухудшению морфологии поверхности. В данной работе рассмотрены вопросы легирования теллуром контактного слоя GaAs до максимальной концентрации 2.5 ⋅ 1019 см-3, при этом сопротивление омических контактов составило менее 5 ⋅ 10-8 Ом ⋅ см2, од- новременно с улучшением морфологии поверхности полупроводника.

Ключевые слова
Получено08.12.2018
Дата публикации08.12.2018
Цитировать   Скачать pdf Для скачивания PDF необходимо авторизоваться
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной.

всего просмотров: 1156

Оценка читателей: голосов 0

1. Данильцев В. М. и др. Сильно легированные слои GaAs: Te, полученные в процессе МОГФЭ с использованием диизопропилтеллурида в качестве источника // Физика и техника полупроводников. 2016. Т. 50. № 11. С. 1459–1462.

2. Shen L. et al. Ohmic contacts with ultra-low optical loss on heavily doped n-type InGaAs and InGaAsP for InP-based photonic membranes //IEEE Photonics Journal. 2016. V. 8. № 1. P. 1–10.

3. Yermolayev D. M. et al. Terahertz detection in a slitgrating-gate field-effect-transistor structure //Solid-State Electronics. 2013. V. 86. P. 64–67.

4. Catalano A. P. et al. Numerical analysis of the thermal behavior sensitivity to technology parameters and operating conditions in InGaP/GaAsHBTs // Compound Semiconductor Integrated Circuit Symposium (CSICS), 2017 IEEE. 2017. P. 1–4.

5. Koop E. J. et al. On the annealing mechanism of AuGe/Ni/Au ohmic contacts to a two-dimensional electron gas in GaAs/AlxGa1– xAs heterostructures // Semiconductor Science and Technology. 2013. V. 28. № 2. P. 1–9.

6. Huo P., Galiana B., Rey-Stolle I. Comparison of Ti/Pd/ Ag, Pd/Ti/Pd/Ag and Pd/Ge/Ti/Pd/Ag contacts to n-type GaAs for electronic devices handling high current densities // Semiconductor Science and Technology. 2017. V. 32. № 4. P. 1–9.

7. Woodall J. M., Braslau N., Freeouf J. L. Contacts to GaAs devices // Physics of Thin Fihn. 2016. V. 13. № 13. P. 199.

8. Stringfellow G. B., Organometallic Vapor-Phase Epitaxy: Theory and Practice // 2ed edition. Academic Press, San Diego, 1999. P. 401.

9. Yu-MinHoung, Low T. S. Te doping of GaAs and AlxGa1–xAs using diethyltellurium in low pressure OMVPE // Journal of Crystal Growth. 2002. V. 77. № 3. P. 272–280.

10. Lewis C. R., Ludowise M. J., Dietze W. T. H2Se “memory effects” upon doping profiles in GaAs grown by metalorganic chemical vapor deposition (MOCVD)// Journal of Electronic Materials. 1984. V. 13. № 3. P. 447–461.

11. Egorkin V. I. et al. Optimization of ohmic contacts to n-GaAs layers of heterobipolar nanoheterostructures // Russian Microelectronics. 2017. V. 46. № 4. P. 272–276.

12. Berger H. H. Models for contacts to planar devices // Sol.- State Electron. 1972. V. 15. P. 145–158.

Система Orphus

Загрузка...
Вверх