Segmentational Mechanism of Periodic Activation of Fault

Publication type Article
Status Published
Institute of the Earth`s Crust, Siberian Branch of the RAS
Irkutsk State University
Address: Russian Federation,
Affiliation: Perm Federal Research Center, Ural Branch, RAS
Address: Russian Federation
Journal nameDoklady Akademii nauk
EditionVolume 482 Issue 1

Physical modeling of “stick-slip” process on a big fracture in elasto-viscous-plastic model was performed to model intermittent activation of a big fault in the lithosphere. It was found that after each full activation of the fracture offsets on it localized in separate segments evolving over time. This evolutionary process is divided into regressive and progressive phases. In the first phase, on a background of stress relaxation, a gradual degeneration of segmented structure of the fracture took place. A large segments are divided on some smaller ones with transition of some of them in a passive state. This regressive scenario of evolution activity of the fracture is reflected in the reduction over time in the number of active segments, their total and average lengths, as well as to increase β-value, calculated by maximum likelihood method on the lengths of the segments. By the end of the regressive phase of deformation process activity of the fracture is focused on a series of short segments, tending for uniform distribution on his strike. With the beginning of the progressive degradation of the stress is replaced by their growth. With increased stress, the number of active segments first rises to a critical density, then begins to decrease by their growth and rapid joining to the larger segments. Its average and the total length and β-value are increased.

Publication date04.11.2018
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 1181

Readers community rating: votes 0

1. Sherman S.I. Sejsmicheskij protsess i prognoz zemletryasenij: tektonofizicheskaya kontseptsiya. Novosibirsk. Akademicheskoe izdatel'stvo «GEO». 2014. – 359 s.

2. Brace W.F., Byerlee J.D. // Science. 1966. 153, 990-992.

3. Gzovskij M.V. Osnovy tektonofiziki. - M. : Nauka, 1975. – 536 s.

4. Sherman S.I. // Geologiya i geofizika. – 1984. - №3. – S.8-18.

5. Sherman S.I. Fizicheskie zakonomernosti razvitiya razlomov zemnoj kory. – Novosibirsk: Nauka. Sib. Otd-nie, 1977. – 102s.

6. Bornyakov S.A., Seminskij K.Zh., Buddo V.Yu., i dr., // Geodinamika i tektonofizika. 2014. T.5. №4. S.823-861.

7. Sutton M.A., Orteu J.J., Schreier H.W., 2009. Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications. Springer. 316 p.

8. Panteleev I., Plekhov O., Pankov I., Evseev A., Naimark O., Asanov V. // Engineering Fracture Mechanics. - 2014. - V. 129.- P. 38-44.

9. Aki K. // Bull. Eq. Res. Univ. Tokio – 1965. № 43. P237-238.

10. Berg E. // Nature – 1968. V.219. № 5159. P. 1141-1143.

11. Tocher D. // Bull. Seism. Soc. Amer.- 1958.V.48, № 2, p. 147-153.

12. Sherman S.I.,Seminskij K.Zh., Bornyakov i dr. Razlomoobrazovanie v litosfere: zony sdviga. Novosibirsk. Nauka. 1991. 261s.

13. Myachkin V.I. , Kostrov B.V., Sobolev G.A., Shamina O.G. // Fizika ochaga zemletryaseniya. M.:Nauka. 1975. S. 6-29.

Система Orphus