On Flatter Suppression in the Keldysh Model

 
PIIS086956520003130-6-1
DOI10.31857/S086956520003130-6
Publication type Article
Status Published
Authors
Affiliation: Saint-Petersburg State University
Address: Russian Federation
Affiliation: Saint-Petersburg State University
Address: Russian Federation
Journal nameDoklady Akademii nauk
EditionVolume 482 Issue 1
Pages33-37
Abstract

  

Keywords
Received04.11.2018
Publication date04.11.2018
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 1455

Readers community rating: votes 0

1. M. V. Keldysh, O dempferakh s nelinejnoj kharakteristikoj, Tr. TsAGI 557 (1944) 26–37.

2. A. I. Lur'e, V. N. Postnikov, K teorii ustojchivosti reguliruemykh sistem, Prikladnaya matematika i mekhanika 8 (3) (1944) 246–248.

3. A. Kh. Gelig, G. A. Leonov, V. A. Yakubovich, Ustojchivost' nelinejnykh sistem s needin- stvennym sostoyaniem ravnovesiya, Nauka, 1978, (English transl: Stability of Stationary Sets in Control Systems with Discontinuous Nonlinearities, 2004, World Scientific).

4. G. Leonov, D. Ponomarenko, V. Smirnova, Frequency-Domain Methods for Nonlinear Analysis. Theory and Applications, World Scientific, Singapore, 1996.

5. P. T. Piiroinen, Y. A. Kuznetsov, An event-driven method to simulate Filippov systems with accurate computing of sliding motions, ACM Transactions on Mathematical Software (TOMS) 34 (3) (2008) 13.

6. G. A. Leonov, N. V. Kuznetsov, Algoritmy poiska skrytykh kolebanij v problemakh Aj- zermana i Kalmana, Doklady Akademii nauk 439 (2) (2011) 167–173.

7. V. O. Bragin, V. I. Vagajtsev, N. V. Kuznetsov, G. A. Leonov, Algoritmy poiska skrytykh kolebanij v nelinejnykh sistemakh. Problemy Ajzermana, Kalmana i tsepi Chua, Izvestiya RAN. Teoriya i Sistemy Upravleniya (4) (2011) 3–36.

8. G. Leonov, N. Kuznetsov, Hidden attractors in dynamical systems. From hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractors in Chua circuits, International Journal of Bifurcation and Chaos 23 (1), art. no. 1330002.

9. G. Leonov, N. Kuznetsov, M. Kiseleva, E. Solovyeva, A. Zaretskiy, Hidden oscillations in mathematical model of drilling system actuated by induction motor with a wound rotor, Nonlinear Dynamics 77 (1-2) (2014) 277–288.

10. G. Leonov, N. Kuznetsov, M. Yuldashev, R. Yuldashev, Hold-in, pull-in, and lock-in ranges of PLL circuits: rigorous mathematical definitions and limitations of classical theory, IEEE Transactions on Circuits and Systems–I: Regular Papers 62 (10) (2015) 2454–2464.

11. M. Kiseleva, N. Kuznetsov, G. Leonov, Hidden attractors in electromechanical systems with and without equilibria, IFAC-PapersOnLine 49 (14) (2016) 51–55.

12. B. Andrievsky, N. Kuznetsov, G. Leonov, Methods for suppressing nonlinear oscillations in astatic auto-piloted aircraft control systems, Journal of Computer and Systems Sciences International 56 (3) (2017) 455–470.

13. N. Kuznetsov, G. Leonov, M. Yuldashev, R. Yuldashev, Hidden attractors in dynamical models of phase-locked loop circuits: limitations of simulation in MATLAB and SPICE, Commun Nonlinear Sci Numer Simulat 51 (2017) 39–49.

14. V. F. Zhuravlyov, O nekorrektnykh zadachakh mekhaniki, Mekhanika tverdogo tela (5) (2016) 36–41.

15. C.-L. Chen, C. Peng, H.-T. Yau, High-order sliding mode controller with backstepping design for aeroelastic systems, Communications in Nonlinear Science and Numerical Simulation 17 (4) (2012) 1813 – 1823.

Система Orphus

Loading...
Up