On a method of approximate computing of scattering matrices for electromagnetic waveguides

 
PIIS086956520003018-2-1
DOI10.31857/S086956520003018-2
Publication type Article
Status Published
Authors
Affiliation: Saint-Petersburg State University
Address: Russian Federation, Saint-Petersburg
Affiliation: Saint-Petersburg State University
Address: Russian Federation, Saint-Petersburg
Affiliation: Saint-Petersburg State University
Address: Russian Federation, Saint-Petersburg
Journal nameDoklady Akademii nauk
EditionVolume 482 Issue 5
Pages517-520
Abstract

The Maxwell system is considered in a three-dimensional domain G having several cylindrical ends. The coefficients are variable and stabilizing at infinity with exponential rate. The limit coefficients are independent of the axial coordinate in the corresponding cylinder. A scattering matrix is defined on the waveguide continuous spectrum outside of the thresholds. The matrix depends on the spectral parameter, is of finite size, which remains constant between neighbouring thresholds and changes when the parameter crosses a threshold. The scattering matrix is unitary. In the paper, we propose a method for approximate computation of the scattering matrix. Moreover, we prove the existence of finite one-side limits of this matrix at every threshold.

Keywords
Received12.11.2018
Publication date12.11.2018
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 1281

Readers community rating: votes 0

1. [1] Nazarov S.A., Plamenevskij B.A., Ehllipticheskie zadachi v oblastyakh s kusochno gladkoj granitsej, M.: Nauka, 1991, 336 c.

2. [2] Plamenevskij B. A., Poretskij A. S., Sistema Maksvella v volnovodakh s neskol'kimi tsilindricheskimi vykhodami na beskonechnost' i neodnorodnym anizotropnym zapolneniem, Algebra ianaliz, 2017, tom 29, № 2, 89—126.

3. [3] Plamenevskij B. A., Poretskij A. S., O povedenii volnovodnykh matrits rasseyaniya v okrestnosti porogov, Algebra i analiz, 2018, tom 30, № 2.

4. [4] L. Baskin, P. Neittaanmaki, B. Plamenevskii, and O. Sarafanov, Resonant Tunneling. Quantum waveguides of variable cross-section, asymptotics, numerics, and applications, Springer International Publishing Switzerland, 2015, 275 p.

Система Orphus

Loading...
Up