Asymptotic Analysis of an Retrial Queueing System M|M|1 with Collisions and Impatient Calls

 
PIIS000523100002856-5-1
DOI10.31857/S000523100002856-5
Publication type Article
Status Published
Authors
Affiliation: National Research Tomsk State University
Address: Tomsk, Russian Federation
Affiliation: National Research Tomsk State University
Address: Russian Federation, Tomsk
Affiliation: National Research Tomsk State University
Address: Russian Federation, Tomsk
Journal nameAvtomatika i Telemekhanika
EditionIssue 12
Pages44-56
Abstract

    

Keywords
Received04.12.2018
Publication date11.12.2018
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 1346

Readers community rating: 5.0 votes 1

1. Wilkinson R.I. Theories for toll traffic engineering in the USA // The Bell Syst. Techn. J. 1956. V. 35. No. 2. P. 421–507.

2. Cohen J.W. Basic problems of telephone trafic and the influence of repeated calls // Philips Telecommun. Rev. 1957. V. 18. No. 2. P. 49–100.

3. Gosztony G. Repeated call attempts and their efect on trafic engineering // Budavox Telecommun. Rev. 1976. V. 2. P. 16–26.

4. Elldin A., Lind G. Elementary Telephone Trafic Theory. Stockholm: Ericsson Public Telecommun., 1971.

5. Artalejo J.R., Gomez-Corral A. Retrial Queueing Systems. A Computational Approach. Stockholm: Springer, 2008.

6. Falin G.I., Templeton J.G.C. Retrial queues. London: Chapman & Hall, 1997.

7. Artalejo J.R., Falin G.I. Standard and retrial queueing systems: A comparative analysis // Revista Mat. Complut. 2002. V. 15. P. 101–129.

8. Roszik J., Sztrik J., Kim C. Retrial queues in the performance modelling of cellular mobile networks using MOSEL // Int. J. Simulat. 2005. No. 6. P. 38–47.

9. Kuznetsov D.Yu., Nazarov A.A. Analysis of non-Markovianmodels of communication networks with adaptive protocols of multiple random access // Autom. Remote Control. 2001. No. 5. P. 124–146.

10. Aguir S., Karaesmen F., Askin O.Z., Chauvet F. The impact of retrials on call center performance // OR Spektrum. 2004. No. 26. P. 353–376.

11. Sudyko E.A., Nazarov A.A. Issledovanie markovskoj RQ-sistemy s konfliktami zayavok i prostejshim vkhodyaschim potokom // Vestn. TGU. UVTiI. 2010. № 3(12). S. 97–106.

12. Nazarov A., Sztrik J., Kvach A. Comparative analysis of methods of residual and elapsed service time in the study of the closed retrial queuing system M/GI/1//N with collision of the customers and unreliable server // Inform. Technol. Math. Model. Queueing Theory Appl. ITMM 2017. Commun. Comp. Inform. Sci. 2017. V. 800. P. 97–110.

13. Berczes T., Sztrik J., Toth A., Nazarov A. Performance modeling of finite-source retrial queueing systems with collisions and non-reliable server using MOSEL // Inform. Technol. Math. Model. Queueing Theory Appl. ITMM 2017. Commun. Somp. Inform. Sci. 2017. V. 700. P. 248–258.

14. Yang T., Posner M., Templeton J. The M/G/1 retrial queue with non-persistent customers // Queueing Syst. 1990. No. 7(2). P. 209–218.

15. Krishnamoorthy A., Deepak T., Joshua V. An M/G/1 retrial queue with nonpersistent customers and orbital search // Stochast. Anal. Appl. 2005. No. 23. P. 975–997.

16. Kim J. Retrial queueing system with collision and impatience // Commun. Korean Math. Soc. 2010. No. 4. P. 647–653.

17. Fayolle G., Brun M. On a system with impatience and repeated calls // Queueing Theory Appl.: Liber Amicorum for J.W. Cohen, 1988. P. 283–305.

18. Martin M., Artalejo J. Analysis of an M/G/1 Queue with two Types of Impatient units // Advances Appl. Probab. 1995. No. 27. P. 647–653.

19. Aissani A., Taleb S., Hamadouche D. An unreliable retrial queue with impatience and preventive maintenance // Proc. 15 Appl. Stochast. Models Data Anal. (ASMDA2013). 2013. P. 1–9.

Система Orphus

Loading...
Up