всего просмотров: 1428
Оценка читателей: 5.0 голосов 1
1. Wilkinson R.I. Theories for toll traffic engineering in the USA // The Bell Syst. Techn. J. 1956. V. 35. No. 2. P. 421–507.
2. Cohen J.W. Basic problems of telephone trafic and the influence of repeated calls // Philips Telecommun. Rev. 1957. V. 18. No. 2. P. 49–100.
3. Gosztony G. Repeated call attempts and their efect on trafic engineering // Budavox Telecommun. Rev. 1976. V. 2. P. 16–26.
4. Elldin A., Lind G. Elementary Telephone Trafic Theory. Stockholm: Ericsson Public Telecommun., 1971.
5. Artalejo J.R., Gomez-Corral A. Retrial Queueing Systems. A Computational Approach. Stockholm: Springer, 2008.
6. Falin G.I., Templeton J.G.C. Retrial queues. London: Chapman & Hall, 1997.
7. Artalejo J.R., Falin G.I. Standard and retrial queueing systems: A comparative analysis // Revista Mat. Complut. 2002. V. 15. P. 101–129.
8. Roszik J., Sztrik J., Kim C. Retrial queues in the performance modelling of cellular mobile networks using MOSEL // Int. J. Simulat. 2005. No. 6. P. 38–47.
9. Kuznetsov D.Yu., Nazarov A.A. Analysis of non-Markovianmodels of communication networks with adaptive protocols of multiple random access // Autom. Remote Control. 2001. No. 5. P. 124–146.
10. Aguir S., Karaesmen F., Askin O.Z., Chauvet F. The impact of retrials on call center performance // OR Spektrum. 2004. No. 26. P. 353–376.
11. Судыко Е.А., Назаров А.А. Исследование марковской RQ-системы с конфликтами заявок и простейшим входящим потоком // Вестн. ТГУ. УВТиИ. 2010. № 3(12). С. 97–106.
12. Nazarov A., Sztrik J., Kvach A. Comparative analysis of methods of residual and elapsed service time in the study of the closed retrial queuing system M/GI/1//N with collision of the customers and unreliable server // Inform. Technol. Math. Model. Queueing Theory Appl. ITMM 2017. Commun. Comp. Inform. Sci. 2017. V. 800. P. 97–110.
13. Berczes T., Sztrik J., Toth A., Nazarov A. Performance modeling of finite-source retrial queueing systems with collisions and non-reliable server using MOSEL // Inform. Technol. Math. Model. Queueing Theory Appl. ITMM 2017. Commun. Сomp. Inform. Sci. 2017. V. 700. P. 248–258.
14. Yang T., Posner M., Templeton J. The M/G/1 retrial queue with non-persistent customers // Queueing Syst. 1990. No. 7(2). P. 209–218.
15. Krishnamoorthy A., Deepak T., Joshua V. An M/G/1 retrial queue with nonpersistent customers and orbital search // Stochast. Anal. Appl. 2005. No. 23. P. 975–997.
16. Kim J. Retrial queueing system with collision and impatience // Commun. Korean Math. Soc. 2010. No. 4. P. 647–653.
17. Fayolle G., Brun M. On a system with impatience and repeated calls // Queueing Theory Appl.: Liber Amicorum for J.W. Cohen, 1988. P. 283–305.
18. Martin M., Artalejo J. Analysis of an M/G/1 Queue with two Types of Impatient units // Advances Appl. Probab. 1995. No. 27. P. 647–653.
19. Aissani A., Taleb S., Hamadouche D. An unreliable retrial queue with impatience and preventive maintenance // Proc. 15 Appl. Stochast. Models Data Anal. (ASMDA2013). 2013. P. 1–9.