PIIS004446690003589-8-1
DOI10.31857/S004446690003589-8
Publication type Article
Status Published
Authors
Affiliation: MEPhI
Address: Russian Federation, Moscow
Journal nameZhurnal vychislitelnoi matematiki i matematicheskoi fiziki
EditionVolume 58 Issue 10
Pages1701-1713
Abstract

  

Keywords
Received11.01.2019
Publication date14.01.2019
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 987

Readers community rating: votes 0

1. Zhukovskij N.E. O gidravlicheskom udare v vodoprovodnykh trubakh. M. – L.: Gostekhteorizdat, 1949.

2. Allievi L. Theoria generale del modo perturbato dell’ acdua nei tubi in pressione. Milan, 1903.

3. Schnyder O. Druckstosse in Pumpensteigletungen // Schweiz Bauztg. 1929. V. 94. R. 22–23.

4. Bergeron L. Etudes des variations de regime dans les conduits d’eau // Rev. gen. Hydraulique. 1935. № 1–2.

5. Gray C.A.M. The analysis of the dissipation of energy in water hammer // Proc. ASCE. 1953. V. 119. № 274. P. 1176–1194.

6. Gray C.A.M. Analysis of water hammer by characteristics // Proc. Am. Soc. Siv. Engrs. 1954. V. 119. P. 1176–1189.

7. Streeter V.L., Lai C. Water hammer analysis including fluid friction // J. Hyd. Div., ASCE. 1962. V. 88. № 3. P. 79–112.

8. Wylie E.B., Streeter V.L. Fluid transients. New York: McGraw-Hill Inc., 1977.

9. Lur'e M.V. Matematicheskoe modelirovanie protsessov truboprovodnogo transporta nefti, nefteproduktov i gaza. M.: Izdatel'skij tsentr RGU nefti i gaza im. I.M. Gubkina, 2012.

10. Foks D.A. Gidravlicheskij analiz neustanovivshegosya techeniya v truboprovodakh gaza. M.: Ehnergoizdat, 1981.

11. Streeter V.L. Unsteady flow calculation by a numerical method // Journal of Basic Engng. 1972. V. 94. P 457–466.

12. Chaudhry M.H., Hussaini M.Y. Second-order accurate explicit finite difference schemes for water hammer analysis // J. Fluid. Engng. 1985. V. 107. P. 523–529.

13. Nathan G.K., Tan J.K. and Ng K.C. Two-dimensional analysis of pressure transients in pipelines // Int. J. Numer. Meth. Fluids. 1988. V. 8(3). P. 339–349.

14. Sґanchez Bribiesca J.L. A finite-difference method to evaluate water hammer phenomen // J. Hydrol. 1981. V. 51. P. 305–311.

15. Tan J.K., Ng K.C., Nathan G.K. Application of the centre implicit method for investigation of pressure transients in pipelines // Int. J. Numer. Meth. Fluids. 1987. V. 7. P. 395–406.

16. Arfaie M., Anderson A. Implicit finite-differences for unsteady pipe flow // Math. Engng for Industry. 1991. V. 3. P. 133–151.

17. Ng K.C., Yap C. An investigation of pressure transients in pipelines with two-phase bubbly flow // Int. J. Numer. Meth. Fluids. 1989. V. 9. P. 1207–1219.

18. Seleznev V.E., Aleshin V.V., Klishin G.S. Metody i tekhnologii modelirovaniya gazoprovodnykh sistem. M.: Editorial URSS, 2002.

19. Guinot V. Boundary condition treatment in 2x2 systems of propagation equations // Int. J. Numer. Meth. Engng. 1998. V. 42. P. 647–666.

20. Wylie E.B., Streeter V.L. Network system transient calculations by implicit method. 45th Annual Meeting of the Society of Petroleum Engineers of AIME. Paper № 2963. 1970.

21. Verwey A., Yu J.H. A space-compact high-order implicit scheme for water hammer simulations. Proceedings of 25th IAHR Congress, Tokyo, Japan. 1993. V. 5. P. 363–370.

22. Verwey A., Illic S. A space-compact high-order implicit scheme for 1-D advection simulations. Proc. of 25th IAHR Congress, Tokyo, Japan. 1993. V. 5. P. 355–362.

23. Hirsch C. Numerical computation of internal and external flows. New York: Wiley, 1990.

24. Toro E.F. Riemann solvers and numerical methods for fluid dynamics. Berlin: Springer, 1997.

25. Joviґc V. Finite elements and the method of characteristics applied to water hammer modelling // Engng Modelling. 1995. V.8. P. 51–58.

26. Shu J.J. A finite element model and electronic analogue of pipeline pressure transients with frequency-dependent friction // J. Fluid. Engng. 2003. V. 125. P. 194–199.

27. Bisgarrd C., Sorensen H.H., Spangenberg S. A Fnite element method for transient compressible flow in pipelines // Int. J. Numer. Meth. Fluids. 1987. V. 7. P. 291–303.

28. Cheng Y.G., Zhang S.H., Chen J.Z. Water hammer simulation by the lattice Boltzmann method // Transactions of the Chinese Hydraulic Engng Society, J. of Hydraulic Engng. 1998. V. 6. P. 25–31.

29. Cheng Y.G., Zhang S.H. Numerical simulation of 2-D hydraulic transients using lattice Boltzmann method // Transactions of the Chinese Hydraulic Engng Society, J. of Hydraulic Engng. 2001. V. 10. P. 32–37.

30. Hou Q., Kruisbrink A.C.H., Tijsseling A.S., Keramat A. Simulating water hammer with corrective smoothed particle method. CASA-Rept 12–14. Eindhoven University of Technology, Department of Math. and Comput. Sci. 2012.

31. Hou Q., Kruisbrink A.C.H., Tijsseling A.S., Keramat A. Simulating transient pipe flow with corrective smoothed particle method. 11th international conference on pressure surges. Lisbon: BHR group. 2012. P. 171–188.

32. Gubin S.A., Evlampiev A.V., Sumskoj S.I. Raschet perekhodnykh protsessov v nefteprovodakh v obychnykh rezhimakh ehkspluatatsii i pri avarijnykh razrusheniyakh/ Cb. nauchnykh trudov “Nauchnaya sessiya MIFI‑99”. T. 1.Ehkologiya i ratsional'noe prirodopol'zovanie. Biofizika. Meditsinskaya fiz. i tekhn. Matem. metody v nauchnykh issledovaniyakh. Teoreticheskie problemy fiz. M.: MIFI. 1999. S. 33–35.

33. Guinot V. Riemann solvers for water hammer simulations by Godunov method // Int. J. Numer. Meth. Engng. 2000. V. 49. P. 851–870.

34. Guinot V. Numerical simulation of two-phase flow in pipes using Godunov method // Int. J. Numer. Meth. Engng. 2001. V. 50. P. 1169–1189.

35. Hwang Y., Chung N. A fast Godunov method for the water-hammer problem // Int. J. Numer. Meth. Fluids. 2002. V. 40. № 6. P. 799–819.

36. Zhao M., Ghidaoui M.S. Godunov-type solution for water hammer flows // J. Hydraul. Engng. 2004. V. 130. № 4.P. 341–348.

37. Sabbagh-Yazdi S.R., Mastorakis N.E., Abbasi A. Water hammer modeling by Godunov type finite volume method // Internat. J. of Math. and Comput. in Simulat. 2007. V. 1. № 4. P. 350–355.

38. Bousso S., Fuamba M. Numerical simulation of unsteady friction in transient two-phase flow with Godunov method// J. of Water Resource and Protect. 2013. V. 5. P. 1048–1058.

39. Sabbagh-Yazdi S.-R., Abbasi A., Mastorakis N.E. Water hammer modeling using 2nd order Godunov finite volume method. Proc. of the European Comput. Conference, Lecture Notes in Electrical Engng. 2009. V. 28. P. 215–223.

40. Kerger F., Archambeau P., Erpicum S., Dewals B.J., Pirotton M. An exact Riemann solver and a Godunov scheme for simulating highly transient mixed flows // J. of Comput.l and Appl. Math. 2011. V. 235. P. 2030–2040.

41. Sumskoi S.I., Sverchkov A.M., Lisanov M.V., Egorov A.F. Simulation of systems for shock wave/compression waves damping in technological plants // J. of Physics: Conference Series. 2016. V. 751. № 1. P. 012023.

42. Sumskoi S.I., Sverchkov A.M. Modeling of non-equilibrium processes in oil trunk pipeline using Godunov type method // Phys. Procedia. 2015. V. 72. P. 347–350.

43. Sumskoi S.I., Sverchkov A.M., Lisanov M.V., Egorov A.F. Simulation of compression waves/shock waves propagation in the branched pipeline systems with multi-valve operations // J. of Physics: Conference Series. 2016. V. 751. № 1. P. 012024.

44. Sumskoi S.I., Sverchkov A.M., Lisanov M.V., Egorov A.F. Modeling of non-equilibrium flow in the branched pipeline systems // J. of Physics: Conference Series. 2016. V. 751. № 1. P. 012022.

45. Godunov S.K. Raznostnyj metod chislennogo rascheta razryvnykh reshenij uravnenij gidrodinamiki // Matem. sb. 1959. T. 47. S. 271–306.

46. Kulikovskij A.G., Pogorelov N.V., Semyonov A.Yu. Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem uravnenij. M.: Fizmatlit, 2012.

47. Bourdarias C., Gerbi S. A conservative model for unsteady flows in deformable closed pipes and its implicit second-order finite volume discretisation // Computers & Fluids. 2008. V. 37. № 10. P. 1225–1237.

48. Il’ichev A.T., Shargatov V.A. Modeling unsteady flows in elastic pipes: energy conservation law. In: problems of mathematical physics and mathematical modelling. Book of abstracts 6th Internat. conference. Ministry of education and science; Russian Federation; National Research Nuclear University MEPhI. 2017. S. 46–47.

Система Orphus

Loading...
Up