Новый численный метод на основе подхода Годунова для моделирования течений слабосжимаемой жидкости в трубопроводе с учетом упругой деформации стенок

 
Код статьиS004446690003589-8-1
DOI10.31857/S004446690003589-8
Тип публикации Статья
Статус публикации Опубликовано
Авторы
Аффилиация: МИФИ
Адрес: 115409 Москва, Каширское ш., 31
Название журналаЖурнал вычислительной математики и математической физики
ВыпускТом 58 Номер 10
Страницы1701-1713
Аннотация

Для решения задач гидродинамики течений в упругой деформируемой трубе в рамках подхода Годунова разработана новая схема для полной нелинейной системы уравнений. При использовании предлагаемого конечно-разностного метода расчет проводится на одномерной сетке, но с разностными ячейками, характеризующимися двумя пространственными размерами. Учет неодномерных эффектов, и прежде всего деформации трубы, осуществляется в ходе перестройки разностных ячеек. Для такой перестраивающейся сетки записаны разностные соотношения. Предложенная перестройка сетки позволяет напрямую учитывать упругую деформацию трубы, без введения такой характеристики, как скорость распространения возмущений в системе “слабосжимаемая жидкость-цилиндрическая оболочка”. Предложенный алгоритм продемонстрировал высокую точность в приложении к задаче о гидроударе. Библ. 48. Фиг. 5. Табл. 4.

Ключевые словаметод семейства Годунова, переходные процессы, трубопроводные системы, скорость волн в трубопроводе со слабосжимаемой жидкостью, упругие трубы, деформация труб, гидроудар
Источник финансированияРабота выполнена при финансовой поддержке РНФ, грант № 16-19-00188.
Получено11.01.2019
Дата публикации14.01.2019
Цитировать   Скачать pdf Для скачивания PDF необходимо авторизоваться
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной.

всего просмотров: 981

Оценка читателей: голосов 0

1. Жуковский Н.Е. О гидравлическом ударе в водопроводных трубах. М. – Л.: Гостехтеориздат, 1949.

2. Allievi L. Theoria generale del modo perturbato dell’ acdua nei tubi in pressione. Milan, 1903.

3. Schnyder O. Druckstosse in Pumpensteigletungen // Schweiz Bauztg. 1929. V. 94. Р. 22–23.

4. Bergeron L. Etudes des variations de regime dans les conduits d’eau // Rev. gen. Hydraulique. 1935. № 1–2.

5. Gray C.A.M. The analysis of the dissipation of energy in water hammer // Proc. ASCE. 1953. V. 119. № 274. P. 1176–1194.

6. Gray C.A.M. Analysis of water hammer by characteristics // Proc. Am. Soc. Сiv. Engrs. 1954. V. 119. P. 1176–1189.

7. Streeter V.L., Lai C. Water hammer analysis including fluid friction // J. Hyd. Div., ASCE. 1962. V. 88. № 3. P. 79–112.

8. Wylie E.B., Streeter V.L. Fluid transients. New York: McGraw-Hill Inc., 1977.

9. Лурье М.В. Математическое моделирование процессов трубопроводного транспорта нефти, нефтепродуктов и газа. М.: Издательский центр РГУ нефти и газа им. И.М. Губкина, 2012.

10. Фокс Д.А. Гидравлический анализ неустановившегося течения в трубопроводах газа. М.: Энергоиздат, 1981.

11. Streeter V.L. Unsteady flow calculation by a numerical method // Journal of Basic Engng. 1972. V. 94. P 457–466.

12. Chaudhry M.H., Hussaini M.Y. Second-order accurate explicit finite difference schemes for water hammer analysis // J. Fluid. Engng. 1985. V. 107. P. 523–529.

13. Nathan G.K., Tan J.K. and Ng K.C. Two-dimensional analysis of pressure transients in pipelines // Int. J. Numer. Meth. Fluids. 1988. V. 8(3). P. 339–349.

14. Sґanchez Bribiesca J.L. A finite-difference method to evaluate water hammer phenomen // J. Hydrol. 1981. V. 51. P. 305–311.

15. Tan J.K., Ng K.C., Nathan G.K. Application of the centre implicit method for investigation of pressure transients in pipelines // Int. J. Numer. Meth. Fluids. 1987. V. 7. P. 395–406.

16. Arfaie M., Anderson A. Implicit finite-differences for unsteady pipe flow // Math. Engng for Industry. 1991. V. 3. P. 133–151.

17. Ng K.C., Yap C. An investigation of pressure transients in pipelines with two-phase bubbly flow // Int. J. Numer. Meth. Fluids. 1989. V. 9. P. 1207–1219.

18. Селезнев В.Е., Алешин В.В., Клишин Г.С. Методы и технологии моделирования газопроводных систем. М.: Едиториал УРСС, 2002.

19. Guinot V. Boundary condition treatment in 2x2 systems of propagation equations // Int. J. Numer. Meth. Engng. 1998. V. 42. P. 647–666.

20. Wylie E.B., Streeter V.L. Network system transient calculations by implicit method. 45th Annual Meeting of the Society of Petroleum Engineers of AIME. Paper № 2963. 1970.

21. Verwey A., Yu J.H. A space-compact high-order implicit scheme for water hammer simulations. Proceedings of 25th IAHR Congress, Tokyo, Japan. 1993. V. 5. P. 363–370.

22. Verwey A., Illic S. A space-compact high-order implicit scheme for 1-D advection simulations. Proc. of 25th IAHR Congress, Tokyo, Japan. 1993. V. 5. P. 355–362.

23. Hirsch C. Numerical computation of internal and external flows. New York: Wiley, 1990.

24. Toro E.F. Riemann solvers and numerical methods for fluid dynamics. Berlin: Springer, 1997.

25. Joviґc V. Finite elements and the method of characteristics applied to water hammer modelling // Engng Modelling. 1995. V.8. P. 51–58.

26. Shu J.J. A finite element model and electronic analogue of pipeline pressure transients with frequency-dependent friction // J. Fluid. Engng. 2003. V. 125. P. 194–199.

27. Bisgarrd C., Sorensen H.H., Spangenberg S. A Fnite element method for transient compressible flow in pipelines // Int. J. Numer. Meth. Fluids. 1987. V. 7. P. 291–303.

28. Cheng Y.G., Zhang S.H., Chen J.Z. Water hammer simulation by the lattice Boltzmann method // Transactions of the Chinese Hydraulic Engng Society, J. of Hydraulic Engng. 1998. V. 6. P. 25–31.

29. Cheng Y.G., Zhang S.H. Numerical simulation of 2-D hydraulic transients using lattice Boltzmann method // Transactions of the Chinese Hydraulic Engng Society, J. of Hydraulic Engng. 2001. V. 10. P. 32–37.

30. Hou Q., Kruisbrink A.C.H., Tijsseling A.S., Keramat A. Simulating water hammer with corrective smoothed particle method. CASA-Rept 12–14. Eindhoven University of Technology, Department of Math. and Comput. Sci. 2012.

31. Hou Q., Kruisbrink A.C.H., Tijsseling A.S., Keramat A. Simulating transient pipe flow with corrective smoothed particle method. 11th international conference on pressure surges. Lisbon: BHR group. 2012. P. 171–188.

32. Губин С.А., Евлампиев А.В., Сумской С.И. Расчет переходных процессов в нефтепроводах в обычных режимах эксплуатации и при аварийных разрушениях/ Cб. научных трудов “Научная сессия МИФИ‑99”. Т. 1.Экология и рациональное природопользование. Биофизика. Медицинская физ. и техн. Матем. методы в научных исследованиях. Теоретические проблемы физ. М.: МИФИ. 1999. С. 33–35.

33. Guinot V. Riemann solvers for water hammer simulations by Godunov method // Int. J. Numer. Meth. Engng. 2000. V. 49. P. 851–870.

34. Guinot V. Numerical simulation of two-phase flow in pipes using Godunov method // Int. J. Numer. Meth. Engng. 2001. V. 50. P. 1169–1189.

35. Hwang Y., Chung N. A fast Godunov method for the water-hammer problem // Int. J. Numer. Meth. Fluids. 2002. V. 40. № 6. P. 799–819.

36. Zhao M., Ghidaoui M.S. Godunov-type solution for water hammer flows // J. Hydraul. Engng. 2004. V. 130. № 4.P. 341–348.

37. Sabbagh-Yazdi S.R., Mastorakis N.E., Abbasi A. Water hammer modeling by Godunov type finite volume method // Internat. J. of Math. and Comput. in Simulat. 2007. V. 1. № 4. P. 350–355.

38. Bousso S., Fuamba M. Numerical simulation of unsteady friction in transient two-phase flow with Godunov method// J. of Water Resource and Protect. 2013. V. 5. P. 1048–1058.

39. Sabbagh-Yazdi S.-R., Abbasi A., Mastorakis N.E. Water hammer modeling using 2nd order Godunov finite volume method. Proc. of the European Comput. Conference, Lecture Notes in Electrical Engng. 2009. V. 28. P. 215–223.

40. Kerger F., Archambeau P., Erpicum S., Dewals B.J., Pirotton M. An exact Riemann solver and a Godunov scheme for simulating highly transient mixed flows // J. of Comput.l and Appl. Math. 2011. V. 235. P. 2030–2040.

41. Sumskoi S.I., Sverchkov A.M., Lisanov M.V., Egorov A.F. Simulation of systems for shock wave/compression waves damping in technological plants // J. of Physics: Conference Series. 2016. V. 751. № 1. P. 012023.

42. Sumskoi S.I., Sverchkov A.M. Modeling of non-equilibrium processes in oil trunk pipeline using Godunov type method // Phys. Procedia. 2015. V. 72. P. 347–350.

43. Sumskoi S.I., Sverchkov A.M., Lisanov M.V., Egorov A.F. Simulation of compression waves/shock waves propagation in the branched pipeline systems with multi-valve operations // J. of Physics: Conference Series. 2016. V. 751. № 1. P. 012024.

44. Sumskoi S.I., Sverchkov A.M., Lisanov M.V., Egorov A.F. Modeling of non-equilibrium flow in the branched pipeline systems // J. of Physics: Conference Series. 2016. V. 751. № 1. P. 012022.

45. Годунов С.К. Разностный метод численного расчета разрывных решений уравнений гидродинамики // Матем. сб. 1959. Т. 47. С. 271–306.

46. Куликовский А.Г., Погорелов Н.В., Семёнов А.Ю. Математические вопросы численного решения гиперболических систем уравнений. М.: Физматлит, 2012.

47. Bourdarias C., Gerbi S. A conservative model for unsteady flows in deformable closed pipes and its implicit second-order finite volume discretisation // Computers & Fluids. 2008. V. 37. № 10. P. 1225–1237.

48. Il’ichev A.T., Shargatov V.A. Modeling unsteady flows in elastic pipes: energy conservation law. In: problems of mathematical physics and mathematical modelling. Book of abstracts 6th Internat. conference. Ministry of education and science; Russian Federation; National Research Nuclear University MEPhI. 2017. С. 46–47.

Система Orphus

Загрузка...
Вверх