Spectral analysis of one problem of the theory of viscoelasticity

 
PIIS004446690003536-0-1
DOI10.31857/S004446690003536-0
Publication type Article
Status Published
Authors
Affiliation:
Vernadsky Crimean Federal University
Voronezh State University
Address: Russian Federation
Journal nameZhurnal vychislitelnoi matematiki i matematicheskoi fiziki
EditionVolume 58 Issue 11
Pages1829-1843
Abstract

  

Keywords
AcknowledgmentThis work was supported by the Ministry of Education and Science of the Russian Federation (project 14.Z50.31.0037).
Received15.01.2019
Publication date15.01.2019
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 971

Readers community rating: votes 0

1. Il'yushin A. A., Pobedrya B. E. Osnovy matematicheskoj teorii termovyazko-uprugosti. M.: Nauka, 1970. 280 s.

2. Larionov G. S. Issledovanie kolebanij relaksiruyuschikh sistem metodom usredneniya // Mekhanika polimerov. 1969. № 4.

3. Pruss J. Evolutionary Integral Equations and Applications. Switzerland: Birkhauser Verlag (Monographs in Mathematics series, Vol. 87.). 1993. 366 p.

4. Vlasov V. V., Rautian N. A. Spektral'nyj analiz funktsional'no-differentsial'nykh uravnenij. M.: MAKS Press, 2016. 488 s.

5. Rektoris K. Variatsionnye metody v matematicheskoj fizike i tekhnike. M.: Mir, 1985. 590 s.

6. Krejn S. G. Linejnye differentsial'nye uravneniya v banakhovom prostranstve. M.: Nauka, 1967. 464 s.

7. Birman M. S. Solomjak M. Z. Spectral Theory of Self-Adjoint Operators in Hilbert Space (Mathematics and its applications (Soviet series)). Dordrecht-Boston-Lancaster-Tokyo: D. Reidel Publishing Company, 1987. 301 p.

8. Markus A. S. Vvedenie v spektral'nuyu teoriyu polinomial'nykh operatornykh puchkov. Kishinev: Shtiintsa, 1986. 260 c.

9. Grubb G., Geymonat G. The essential spectrum of elliptic systems of mixed order // Math. Ann. 1977. Vol. 227. P. 247–276.

10. Gohberg I., Goldberg S., Kaashoek M. A. Classes of Linear Operators. Vol.1. Basel-Boston-Berlin: Birkhauser Verlag, 1990. 468 p.

11. Avakyan V. A. Asimptoticheskoe raspredelenie spektra linejnogo puchka, vozmuschennogo analiticheskoj operator-funktsiej // Funkts. analiz i ego pril. 1978. T. 12. 2. S. 66–67.

12. Orazov M. B. Nekotorye voprosy spektral'noj teorii nesamosopryazhennykh operatorov i svyazannye s nimi zadachi iz mekhaniki. Diss. … dokt. fiz. – matem. nauk. Ashkhabat, 1982.

13. Birman M. Sh., Solomyak M. Z. Asimptotika spektra differentsial'nykh uravnenij // Itogi nauki i tekhniki VINITI. Ser. matem. analiz. 1977. T. 14. C. 5–58.

14. Markushevich A. I. Teoriya analiticheskikh funktsij. T. 1. M.: Nauka, 1967. 486 s.

Система Orphus

Loading...
Up