On the application of compact and multioperator approximations in the method of immersed boundary

 
PIIS004446690002010-2-1
DOI10.31857/S004446690002010-2
Publication type Article
Status Published
Authors
Affiliation: VC FITSNURAN
Address: Russian Federation
Affiliation: MIPT
Address: Russian Federation
Journal nameZhurnal vychislitelnoi matematiki i matematicheskoi fiziki
EditionVolume 58 Issue 8
Pages157-181
Abstract

        

Keywordsimmersed boundary method, compact and multioperator schemes, radial basis functions, Navier – Stokes equations, cylinder flow
Received27.10.2018
Publication date28.10.2018
Number of characters467
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 792

Readers community rating: votes 0

1. T. Ye et all. An Accurate Cartesian Grid Method for Viscous Incompressible Flows with Complex Immersed Boundaries // J. Comput. Phys.1999. V. 156. P.209–240.

2. Ming-Chih Lai, C.S. Peskin. An Immersed Boundary Method with Formal Second-Order Accuracy and Reduced Numerical Viscosity // J. Comput. Phys. 2000. V. 160. P. 705–719.

3. Fadlun E.A. et all. Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations // J. Comput. Phys. 2000. V. 161. P. 35–60.

4. Kim J. et all. An Immersed-Boundary finite-volume method for simulations of flow in complex geometries // J. Comput. Phys. 2001. V. 171. P. 132–150.

5. Tseng Y-H., Ferziger J.H. A ghost-cell immersed boundary method for flow in complex geometry // J. Comput. Phys. 2003. V. 192. P. 593–623.

6. Gilmanov A., Sotiropoulos F., Balaras E. A general reconstruction algorithm for simulating flows with complex 3D immersed boundaries on Cartesian grids // J. Comput. Phys. 2003. V. 191. P. 660–669

7. de Tullio M.D. et al. An immersed boundary method for compressible flows using local grid refinement // J. Comput. Phys. 2007. V. 225. R. 2098–2117.

8. Jung-Il Choi et all. An immersed boundary method for complex incompressible flows // J. Comput. Phys. 2007. V. 224 R. 757–784

9. Abalakin I.V. i dr. Primenenie metoda Brinkmana shtrafnykh funktsij dlya chislennogo modelirovaniya obtekaniya prepyatstvij vyazkim szhimaemym gazom // Preprinty IPM im. M.V. Keldysha. 2014. № 11. 14 s.

10. Mortikov E.V. Primenenie graficheskikh protsessorov dlya chislennogo modelirovaniya techenij vyazkoj neszhimaemoj zhidkosti v oblastyakh slozhnoj konfiguratsii metodom pogruzhennoj granitsy // Vychisl. metody i programmirovanie 2012. T. 13. Vyp. 1. R. 177–190.

11. Vinnikov V.V., Reviznikov D.L. Neyavnyj metod pogruzhennoj granitsy s fiktivnymi yachejkami dlya resheniya zadach o techenii vyazkoj neszhimaemoj zhidkosti v slozhnykh oblastyakh // Tr. MAI. 2004. № 17.

12. Vinnikov V.V., Reviznikov D.L. Neyavnyj metod pogruzhennoj granitsy s fiktivnymi yachejkami dlya resheniya zadach o techenii vyazkoj neszhimaemoj zhidkosti v slozhnykh oblastyakh // Tr. MAI. 2004. № 17.

13. Gresho P.M. et all. A modified finite element method for solving the time dependent incompressible Navier-Stokes equations. Part 2. Applications // Int. J. Numer. Methods Fluids 4, 619 (1984).

14. Coutanceau M., Bouard R. Experimental determination of the main features of the viscous flow in the wake of a circular cylinder in uniform translation.Part 1.Steady flow // J. Fluid Mech. 1977. V. 79. 2. P. 231.

15. Saiki E.M., Biringen S. Numerical Simulation of a Cylinder in Uniform Flow: Application of a Virtual Boundary Method // J. Comput. Phys. 1996. V. 123. R. 450–465.

16. Tolstykh A.I. Ob ispol'zovanii mul'tioperatorov dlya postroeniya setochnykh approksimatsij vysokikh poryadkov // Zh. vychisl. matem. i mat. fiz. 2016. T. 56. № 6. S. 943–957.

17. Tolstykh A.I. O semejstvakh vysokotochnykh mul'tioperatornykh approksimatsij proizvodnykh, ispol'zuyuschikh dvukhtochechnye peratory // Dokl. A N. 2017. T. 473. №2. S. 138–141.

18. Tolstykh A.I. Vysokotochnye kompaktnye i mul'tioperatornye approksimatsii dlya uravnenij v chastnykh pro-izvodnykh. M.: Nauka, 2015. 320 s.

19. Kansa E.J., Carlson R.E. Radial basis function: a class of grid-free scattered data approximations // Comput. Fluid Dynamics J. 1995. V. 3. R. 479–496.

20. Tolstykh A.I., Shirobokov D.A. On using radial basis functions in a finite difference mode with applications to elasticity problems // Comput. mechanics. 2003. V. 33. R. 63–79.

21. Lipavskij M.V., Tolstykh A.I., Chigeryov N.E. O pryamom chislennom modelirovanii neustojchivosti sdvigovykh sloev na osnove skhemy s mul'tioperatornymi approksimatsiyami devyatogo poryadka // Zh. vychisl. matem. i matem. fiz. 2013. T. 53. № 3. S. 417–432.

22. Lipavskij M.V., Tolstykh A.I. // Zh. vychisl. matem. i matem. fiz. 2013. T. 53. № 4. S. 455–468.

Система Orphus

Loading...
Up