Comparing the Satellite Microwave and Visual Shipborne Sea Ice Concentration

 
PIIS020596140003369-6-1
DOI10.31857/S020596140003369-6
Publication type Article
Status Published
Authors
Affiliation: FSBI Arctic and Antarctic Research Institute
Address: Russian Federation
Affiliation: Moscow Institute of Physics and Technology (State University)
Address: Russian Federation
Affiliation: Marine Hydrophysical Institute RAS
Address: Russian Federation
Affiliation: FSBI Arctic and Antarctic Research Institute
Address: Russian Federation
Affiliation: Marine Hydrophysical Institute RAS
Address: Russian Federation
Affiliation: Marine Hydrophysical Institute RAS
Address: Russian Federation
Affiliation: Institute of Atmospheric Physics A.M. Obukhov RAS
Address: Russian Federation
Affiliation: FSBI Arctic and Antarctic Research Institute
Address: Russian Federation
Affiliation: FSBI Arctic and Antarctic Research Institute
Address: Russian Federation
Journal nameIssledovanie Zemli iz kosmosa
EditionIssue 6
Pages65-76
Abstract

The total ice concentration from satellite microwave data derived by three algorithms NASA Team, ASI and VASIA2 was used to compare with special shipborne observations. Visual observations were carried out during 15 scientifi c expeditions in the Arctic. The data were compared by various gradations of ice concentration (very open, open, close, very close and compact ice) for summer and winter seasons. Generally, in summer period the NASA Team algorithm underestimates total ice concentration by 1 tenth, ASI and VASIA2 algorithms – by 0.5 tenth in comparison to the shipborne data. All three algorithms overestimate total ice concentration in areas of very open ice and underestimate in areas of close, very close and compact ice. The mostly pronounced diff erences are fi xed in areas of open ice, which are typical for the ice edge zones. In winter period the mean error does not exceed 1 tenth, however, in areas of very open and close ice the mean error is signifi cantly higher than in summer period. Melting stage observed from the ships was used to estimate infl uence of ice melting processes on satellite microwave ice concentration. The mean error reaches –2.9 tenth for the NASA Team algorithm,—2.8 tenth for the ASI algorithm and –5.0 tenth for the VASIA2 algorithm, when area of melt ponds on sea surface is maximal. The results obtained in the paper are useful to determine the range of decreasing of ice extent in the Arctic, observed last years.

Keywordssatellite microwave radiometry, algorithms, shipborne ice observations, ice concentration, ice melting
AcknowledgmentThis work was supported by the FANO (the topic “Monitoring”, state registration No. 01.20.0.2.00164) (V. Tikhonov, M. Raev, E. Sharkov); with the support of the Ministry of Education and Science of the Russian Federation, agreement No. 14.616.21.0078 (RFMEFI61617X0078). Satellite data processing (NASA Team and ASI algorithms) was carried out within the framework of grant 2007/2008 from Otto-III laboratory
Received27.12.2018
Publication date27.12.2018
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 1643

Readers community rating: votes 0

1. Alekseeva T. A., Frolov S. V. Sravnitel'nyj analiz sputnikovykh i sudovykh dannykh o ledyanom pokrove v moryakh Rossijskoj Arktiki // Issled. Zemli iz kosmosa. 2012 g. № 6. S. 69–76.

2. Bondur V. G. Aehrokosmicheskie metody i tekhnologii monitoringa neftegazonosnykh territorij i ob'ektov neftegazovogo kompleksa // Issled. Zemli iz kosmosa. 2010. № 6. S. 3–17.

3. Buzin I. V., Alekseev Yu. N. Metody aktivnoj bor'by s ajsbergami // Ledyanye obrazovaniya morej zapadnoj Arktiki. SPb.: AANII, 2006. Ch. 2.3. S. 164–175.

4. Ivanov V. V., Alekseev V. A., Alekseeva T. A., Koldunov N., Repina I. A., Smirnov A. V. Arkticheskij ledyanoj pokrov stanovitsya sezonnym? // Issled. Zemli iz kosmosa. 2013. № 4. S. 50–65.

5. Likhomanov V. A., Stepanov I. V. Interpretatsiya dannykh o ledyanom pokrove pri raschete ledovykh nagruzok na dno i shel'fovye okruzheniya // Ledyanye obrazovaniya morej zapadnoj Arktiki. SPb.: AANII, 2006. Ch. 2.1. S. 131–139.

6. Mironov E. U. Ledovye usloviya v Grenlandskom i Barentsevom moryakh i ikh dolgosrochnyj prognoz. SPb.: AANII, 2004. 320 s.

7. Mironov E. U., Frolov S. V. Vliyanie morskogo l'da na sudokhodstvo i klassifikatsiya opasnykh ledovykh yavlenij. // Opasnye ledovye yavleniya dlya sudokhodstva v Ark tike. SPb.: AANII, 2010. Gl. 1. S. 12–32.

8. Nablyudeniya za ledovoj obstanovkoj: uch. pos. SPb.: AANII, 2009. 360 s.

9. Tikhonov V. V., RepinaI. A., Alekseeva T. A., Ivanov V. V., RaevM. D., Sharkov E. A., Boyarskij D. A., Komarova N. Yu. Vosstanovlenie splochennosti ledyanogo pokrova Arktiki po dannym SSM/I // Sovr. probl. dist. zondir. Zemli iz kosmosa. 2013. T. 10. № 2. S. 182–193.

10. Tikhonov V. V., Repina I. A., Raev M. D., Sharkov E. A., Boyarskij D. A., Komarova N. Yu. Kompleksnyj algoritm opredeleniya ledovykh uslovij v polyarnykh regionakh po dannym sputnikovoj mikrovolnovoj radiometrii (VASIA2) // Issled. Zemli iz kosmosa. 2015. № 2. S. 78–93.

11. Tikhonov V. V., Raev M. D., Sharkov E. A., Boyarskij D. A., Repina I. A., Komarova N. Yu. Sputnikovaya mikrovolnovaya radiometriya morskogo l'da polyarnykh regionov. Obzor // Issled. Zemli iz kosmosa. 2016. № 4. S. 65–84.

12. Repina I. A., Tikhonov V. V., Alekseeva T. A., Ivanov V. V., Raev M. D., Sharkov E. A., Boyarskij D.A., Komarova N. Yu. Ehlektrodinamicheskaya model' izlucheniya arkticheskogo ledyanogo pokrova dlya resheniya zadach sputnikovoj mikrovolnovoj radiometrii // Issled. Zemli iz kosmosa. 2012. № 5. S. 29–36.

13. Rukovodstvo po proizvodstvu sudovykh spetsial'nykh ledovykh nablyudenij. SPb.: AANII, 2011.

14. Frolov I. E., Gudkovich Z. M., Karklin V. P., Kovalev E. G., Smolyanitskij V. M. Nauchnye issledovaniya v Arktike. T. 2. Klimaticheskie izmeneniya ledyanogo pokrova morej Evrazijskogo shel'fa. SPb.: Nauka, 2007. 158 s.

15. Khromov S. P., Petrosyants M. A. Meteorologiya i klimatologiya. M.: Izd-vo Moskovskogo univ., Nauka, 2006. 582 s.

16. Yulin A. V. Vtorzhenie trudnoprokhodimykh l'dov na trassy plavaniya // Opasnye ledovye yavleniya dlya sudokhodstva v Arktike. SPb.: AANII, 2010. Gl. 8. S. 269–277.

17. Agnew T, Howell S. The Use of Operational Ice Charts for Evaluating Passive Microwave Ice Concentration Data // Atm. – Ocean. 2003. V. 41(4). R. 317–331. doi: 10.3137/ao.410405

18. Andersen S., Tonboe R., Kern S., Schyberg H. Improved retrieval of sea ice total concentration from spaceborne passive microwave observations using numerical weather prediction model fi elds: An intercomparison of nine algorithms // Rem. Sens. Environm. 2006. V. 104. P. 374–392.

19. Beitsch A., Kern S., Kaleschke L. Comparison of AMSR-E sea ice concentrations with aspect ship observations around Antarctica. Proc. of the Geosci. and Rem. Sens. Symp. Munich, Germany, 22–27 July 2012.

20. Cavalieri D. J., Gloersen P., Wilheit T. T. Aircraft and satellite passive microwave observations of the Bering Seaice cover during MIZEX West // IEEE Trans. Geosci. Rem. Sens. 1986. V. GE-24. № 3. P. 368–377.

21. Comiso J. C., Sea ice eff ective microwave emissivities from satellite passive microwave and infrared observations // J. Geophys. Res. 1983. V. 88. P. 686–704.

22. Comiso J. C., Ackley S. F., Gordon A. L. Antarctic sea ice microwave signatures and their correlation with in situ ice observations // J. Geophys. Res. 1984. V. 89. NO. C1. P. 662–672.

23. Gloersen P., Campbell W. J., Cavalieri D. J., Comiso J. C., Parkinson C. L., Zwally H. J. Arctic and antarctic sea ice, 1978–1987:

24. Satellite passive-microwave observations and analysis. Washington D. C.: NASA, 1992. 290 p.

25. Ivanova N., Johannessen O. M., Pedersen L. T., Tonboe R. T. Retrieval of Arctic sea ice parameters by satellite passive microwave sensors: a comparison of eleven sea ice algorithms // IEEE T. Geosci. Rem. 2014. V. 52. P. 7233–7246.

26. Ivanova N., Pedersen L. T., Tonboe R. T., Kern S., Heygster G., Lavergne T., Sorensen A., Saldo R., Dybkj?r G., Brucker L., Shokr M. Inter-comparison and evaluation of sea ice algorithms: towards further identifi cation of challenges and optimal approach using passive microwave observations // The Cryos. 9. 2015. P. 1797–1817, doi:10.5194/tc-9–1797–2015

27. Knuth M. A., Ackley S. F. Summer and early-fall sea ice concentration in the Ross Sea: comparison of in situ ASPeCT observations and satellite passive microwave estimates // Ann. Glaciol. 2006. V. 44. P. 303–309.

28. Meier W. N. Comparison of passive microwave ice concentration algorithm retrievals with AVHRR imagery in Arctic Peripheral Seas // IEE Transact. Geosci. and Rem. Sens. 2005. V. 43. № 6. doi: 10.1109/TGRS.2005.846151

29. Ozsoy-Cicek B., Ackley S. F., Worby A., Xie H., Lieser J. Antarctic sea-ice extents and concentrations: comparison of satellite and ship measurements from International Polar Year cruises // Ann. Glaciol. 2015. V. 52. P. 318–326.

30. Przybylak R. The Climate of the Arctic. Dordrecht: Kluwer Acad. Publ., 2003. 271 p.

31. Tedesco M. Remote sensing of the cryosphere. Oxford, Engl.: JohnWiley & Sons, 2015.

32. Tikhonov V. V., Repina I. A., Raev M. D., Sharkov E. A., Ivanov V. V., Boyarskii D. A., Alexeeva T. A., Komarova N.Yu. A physical algorithm to measure sea ice concentration from passive microwave remote sensing data // Adv. in Space Res. 2015. V. 56. № 8. P. 1578–1589. DOI:10.1016/j.asr.2015.07.009

33. Tikhonov V. V., Boyarskii D. A., Sharkov E. A, Raev M.D., Repina I. A., Ivanov V.V, Alexeeva T.A., Komarova N.Yu. Microwave Model of Radiation from the Multilayer “Ocean-atmosphere” System for Remote Sensing Studies of the Polar Regions // Progr. in Electr. Res. B. 2014. V. 59. P. 123–133. DOI:10.2528/PIERB14021706

34. Spreen G., Kaleschke L., Heygster G. Sea ice remote sensing using AMSR-E89 GHz Channels // J. Geogr. Res. 2008. V. 113. № C2. doi: 10.1029/2005JC003384

35. Tonboe R. T., Eastwood S., Lavergne T., Sorensen A. M., Rathmann N., Dybkj?r G., Toudal Pedersen L., Hoyer J. L., Kern S. The EUMETSAT sea ice climate data record // The Cryosphere Disc. 2016. V. 10. P. 2275–2290. Doi: 10.519/tc-2016–34

36. Vavrus S., Harrison S. P. The impact of sea-ice dynamics On the Arctic climate system // Clim. Dyn. 2003. V. 20 (7–8). P. 741–757.

37. Worby A. P., Allison I. A technique for making ship-based observations of Antarctic sea ice thickness and characteristics: Pt. I. Observ. Techn. and results. Res. Rep. 14. P. 1–23. Hobart, Tasmania, Australia: Antarct. Coop. Res. Cent., Univ. of Tasmania, 1999.

38. Wiebe H. Validation of the ARTIST Sea Ice (ASI) Concentration Algorithm and Geolocation of the Microwave Radiometer AMSR-E data. Master Th., Inst. of Env. Phys. Univ. of Bremen, 2007. 84 pp.

39. Xiaoping P, Jian P., Xi Z., Quing J., Meng Q., Zian C. Comparison between AMSR2 sea ice concentration products and pseudo- ship observations of the Arctic and Antarctic sea ice edge on cloud-free days // Rem. Sens. 2018. V. 10. P. 317. doi:10.3390/rs10020317

Система Orphus

Loading...
Up