Solution of a Boundary Value Problem for Velocity-Linearized Navier–Stokes Equations in the Case of a Heated Spherical Solid Particle Settling in Fluid

 
PIIS004446690000365-2-1
DOI10.31857/S004446690000365-2
Publication type Article
Status Published
Authors
Affiliation: Belgorod State University
Affiliation: Joint Institute of High Temperatures, Russian Academy of Sciences
Address: Russian Federation
Affiliation: Belgorod State University
Address: Russian Federation
Journal nameZhurnal vychislitelnoi matematiki i matematicheskoi fiziki
EditionVolume 58 Issue 7
Pages1178-1188
Abstract

Assuming that the fluid viscosity is an exponential-power function of temperature, a boundary value problem for the Navier–Stokes equations linearized with respect to velocity is solved and the uniqueness of the solution is proved. The problem of a nonuniformly heated spherical solid particle settling in fluid is considered as an application.

KeywordsNavier–Stokes equation linearized with respect to velocity, boundary value problem for a viscous incompressible nonisothermal fluid
Received04.08.2018
Publication date11.10.2018
Number of characters348
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 543

Readers community rating: votes 0

1. Selim A., Hossain M.A., Rees D.A.S. The effect of surface mass transfer on mixed convection flow past a heated vertical flat permeable plate with thermophoresis // Int. J. Thermal Sci. 2003. V. 42. P. 973–982.

2. Chamkha A.J., Al-mudhaf A.F., Pop I. Effects of heat generation or absorption on thermophoretic free convection boundary layer from a vertical flat plate embedded in a porous medium // Int. Commun Heat Mass Transfer. 2006. V. 33. P. 1096–1102.

3. Reineck P., Wienken C.J., Braun D. Thermophoresis of single stranded DNA // Electrophoresis. 2010. V. 31 (2). P. 279–286.

4. Ramasamy Kandasamy, I. Muhaimin I., Azme B. Khamis. Thermophoresis and variable viscosity effects on MHD mixed convective heat and mass transfer past a porous wedge in the presence of chemical reaction // J. Heat and Mass Transfer. 2009. V. 45. № 6. P. 703–712.

5. Ladyzhenskaya O.A. Issledovanie uravneniya Nav'e–Stoksa v sluchae statsionarnogo dvizheniya neszhimaemoj zhidkosti // Uspekhi matem. nauk. 1959. T. XIV. Vyp. 3 (87). S. 75–97.

6. Bytev V.O. Invariantnye resheniya uravnenij Nav'e–Stoksa // Prikl. matem. i tekhn. fiz. 1972. № 6. S. 56–64.

7. Babenko K.I. O statsionarnykh resheniyakh zadachi obtekaniya tela vyazkoj neszhimaemoj zhidkost'yu // Dokl. AN. 1973. T. 210. № 2. S. 294–297.

8. Caffarelli L., Kohn R., Nirenberg L. Partial regularity of suitable weak solutions of the Navier–Stokes equations // Comm. Pure and Appl. Math. 1982. V. 35. P. 771–831.

9. Fefferman Ch. Existence and smoothness of the Navier–Stokes equation, http://claymath.org/millennium/Navier-Stokes Equations. Cambridge, MA: Clay Mathematies Institute, 2000. P. 1–5.

10. Constantin P. Some open problems and research directions in the mathematical study of fluid dynamics // Mathematics Unlimited–2001 and Beyond. Berlin: Springer Verlag, 2001. P. 353–360.

11. Ladyzhenskaya O.A. Shestaya problema tysyacheletiya: uravneniya Nav'e–Stoksa. Suschestvovanie i gladkost' // Uspekhi matem. nauk. 2003. T. 58. Vyp. 2 (350). S. 45–78.

12. Prokudin D.A. Analiz razreshimosti kraevykh zadach dlya uravnenij smesej zhidkosti, avtoref. kand. fiz.-mat. nauk:01.01.02. Kemerovskij gos. un-t, 2009. 15 s.

13. Otelbaev M. Suschestvovanie sil'nogo resheniya uravneniya Nav'e–Stoksa // Matematicheskij zhurnal. 2013. T. 13. № 4 (50). S. 5–101.

14. Bretshnajder S. Svojstva gazov i zhidkostej. Inzhenernye metody rascheta // Khimiya, M., 1966.

15. Rid R., Prausnits Dzh., Shervud T. Svojstvo gazov i zhidkostej. Khimiya, Leningrad, 1982.

16. Najdenov V.I. Ustanovivsheesya techenie vyazkoj neszhimaemoj zhidkosti s uchetom zavisimosti vyazkosti ot temperatury // Prikl. matem. i mekhan. tekhn. 1971. T. 38. Vyp. 1. S. 162–166.

17. Glushak A.V., Malaj N.V., Mironova N.N. Reshenie kraevoj zadachi dlya linearizovannykh po skorosti uravnenij Nav'e–Stoksa v sluchae neizotermicheskogo obtekaniya nagretogo sferoida gazoobraznoj sredoj // Zh. vychisl. matem. i matem. fiz. 2012. T. 52. № 5. S. 946–959.

18. Malaj N.V., Limanskaya A.V., Schukin E.R. Reshenie kraevoj zadachi dlya linearizovannogo po skorosti uravneniya Nav'e–Stoksa v sluchae neizotermicheskogo obtekaniya ravnomerno nagretoj sfery gazoobraznoj sredoj // Differents. ur-ya. 2015. T. 51. № 10. S. 1328–1337.

19. Malaj N.V., Glushak A.V., Limanskaya A.V. Reshenie kraevoj zadachi medlennogo obtekaniya sfery vyazkim neizotermicheskim gazom // Izvestiya VUZov. Matem. 2016. № 12. S. 54–65.

20. Khappel' Dzh., Brenner G. Gidrodinamika pri malykh chislakh Rejnol'dsa. M.: Mir, 1960.

21. Landau L.D., Lifshits E.M. Gidrodinamika. M.: Nauka, 1986.

22. Kamke Eh. Spravochnik po obyknovennym differentsial'nym uravneniyam. M.: Nauka, 2003.

Система Orphus

Loading...
Up