Estimation of parameters of corrosion processes in the Na – K eutectic melt using metal solution models

 
PIIS004036440003636-3-1
DOI10.31857/S004036440003636-3
Publication type Article
Status Published
Authors
Affiliation: FSBEI of HE "Moscow Polytechnic University"
Address: Russian Federation
Affiliation: FSBEI of HE "Moscow Polytechnic University"
Address: Russian Federation
Journal nameTeplofizika vysokikh temperatur
EditionVolume 56 Issue 4
Pages533-542
Abstract

   

Keywords
AcknowledgmentThe article was prepared within the framework of the implementation of the basic part of the state mission of the Moscow Polytechnic University (project No. 3.4880.2017 / 8.9).
Received26.12.2018
Publication date26.12.2018
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 1402

Readers community rating: votes 0

1. Askhadullin R.Sh., Martynov P. N., Rachkov V. I. i dr. Kontrol' i regulirovanie soderzhaniya kisloroda v tyazhelykh zhidkometallicheskikh teplonositelyakh dlya protivokorrozionnoj zaschity stalej // TVT. 2016. T. 54. № 4. S. 595.

2. Alchagirov B.B., Dyshekova F. F. Poverkhnostnoe natyazhenie rasplavov svinets-vismutovoj ehvtektiki s litiem // TVT. 2016. T. 54. № 6. S. 866.

3. Kruglov A.B., Kruglov V. B., Rachkov V. I. i dr. Metodika izmereniya teploprovodnosti zhidkogo svintsa v diapazone temperatur 350–1000 °C // TVT. 2015. T. 53. № 4. S. 596.

4. Kambolov D.A., Kashezhev A. Z., Kutuev R. A. i dr. Politermy plotnosti, poverkhnostnogo natyazheniya vismutistogo svintsa i ugla smachivaniya vysokonikelevykh i ferritno-martensitnykh stalej splavom Pb–Bi // TVT. 2014. T. 52. № 3. S. 392.

5. Savchenko I.V., Stankus S. V., Agazhanov A. Sh. Issledovanie teploprovodnosti i temperaturoprovodnosti zhidkogo vismuta v intervale temperatur 545– 970 K // TVT. 2013. T. 51. № 2. S. 315.

6. Andreev P.V., Zhabotinskij E. E., Nikonov A. M. Perspektivy ispol'zovaniya termoehmissionnykh YaEhU dlya mezhorbital'nykh pereletov kosmicheskikh apparatov v okolozemnom prostranstve // Atomnaya ehnergiya. 1992. T. 73. № 5. S. 346.

7. Zhang J., Kapernick R., Marcille T. F. Corrosion of Materials by Liquid NaK Coolant in a Nuclear Power System // Nucl. Sci. Eng. 2008. V. 160. P. 75.

8. Zimmerman C. A. Corrosion of Type 316 Stainless Steel in NaK Service – A Literature Survey. Sci. Rep. IDO?14651. Phillips Petroleum Corporation. 1965. 72 p.

9. Reib M. J. Type 316 Stainless Steel Forced Convection NaK Corrosion Loop Tests, NSSC1A1, 2A2. Sci. Rep. TIM?655. Pratt & Whitney. 1961. 91 p.

10. Borgstedt H.U., Guminski C. IUPAC Solubility Data Series. Metals in Liquid Alkali Metals. Oxford: Oxford University Press, 1996. V. 63–64. 654 p.

11. Awasthi S.P., Borgstedt H. U. An Assessment of Solubility of Some Transition Metals (Fe, Ni, Mn, and Cr) in Liquid Sodium // J. Nucl. Mater. 1983. V. 116. P. 103.

12. Kuzin A.N., Lyublinskij I. E., Beskorovajnyj N. M. Raschet linij likvidusa v sistemakh schelochnoj metall–perekhodnyj metall so storony schelochnogo metalla. V kn.: Raschety i ehksperimental'nye metody postroeniya diagramm sostoyaniya. M.: Nauka, 1985. S. 113.

13. Niessen A.K., de Boer F. R., Miedema A. R. Model Predictions for the Enthalpy of Formation of Transition Metal Alloys II // CALPHAD. 1983. V. 7. № 1. P. 51.

14. Kaufman L., Nesor H. Coupled Phase Diagrams Thermochemical Data for Transition Metal Binary Systems – I // CALPHAD. 1978. V. 2. № 1. P. 55.

15. Kubaschewski O. An Empirical Estimation of the Henrian Constants of Dilute Metallic Solutions // High Temp. – High Pres. 1981. V. 13. № 4. P. 435.

16. Lupis C.H.P., Elliott J. F. Prediction of Enthalpy and Entropy Interaction Coefficients by the “Central Atoms” Theory // Acta Metal. 1967. V. 15. P. 265.

17. Tanaka T., Gokcen N. A., Kumar K. C.H., Hara S., Morita Z. Thermodynamic Relationship between Enthalpy of Mixing and Excess Entropy in Liquid Binary Alloys // Z. Metallkd. 1996. V. 87. № 10. P. 779.

18. Smitlz K. Dzh. Metally. Spr. izd. / Per. s angl. M.: Metallurgiya, 1980. 447 s.

19. Eichelberger R.L., McKisson R. L. Solubility Studies of Cr, Co, Mn, Mo, Ni, Nb, Ti, V, and Zr in Liquid Sodium. Tech. Rep. AL-AEC?12955. Canoga Park, CA, USA: Atomics International, 1970.

20. Pellet C.R., Thompson R. Measurement of Transition Metal Solubilities in Liquid Sodium; Cobalt, Nickel, and Chromium. In Liquid Metal Engineering and Technology: Proc. 3rd Int. Conf. Held in Oxford. 9–13 April. 1984. London, UK: British Nuclear Energy Society, 1984. V. 3. P. 43.

21. Kaufman L., Bernstejn Kh. Raschet diagramm sostoyaniya s pomosch'yu EhVM. M.: Mir, 1972. 326 s.

22. Zhang J., Kapernick R. Oxygen Chemistry in Liquid Sodium– Potassium Systems // Progress Nucl. Energy. 2009. V. 51. P. 614.

23. Saboungi M.-L., Marr J., Blander M. Thermodynamic Properties of Quasi-Ionic Alloy from Electromotive Force Measurements: the Li–Pb System // J. Chem. Phys. 1978. V. 68. № 4. P. 1375.

24. Thorley A.W., Tyzack C. Corrosion and Mass Transport of Steels and Nickel Alloys in Sodium Systems. In: Liquid Alkali Metals. Proc. Int. Conf., Nottingham, 1973. London, 1973. P. 257.

25. Bhat N.P., Borgstedt H. U. Corrosion Behavior of Structural Materials in Sodium Influenced by Formation of Ternary Oxides // Werkstoffe und Korrosion. 1988. V. 39. P. 115.

26. Ganesan V., Borgstedt H. U. Oxides in K–Me–O (Me = = Cr, Fe) Systems and Their Free Energies of Formation // J. Less-Common Metals. 1985. V. 114. P. 343.

27. Klueh R. L. Effect of Oxygen on Niobium–Sodium Compatibility // Corrosion (USA). 1971. V. 27. № 8. P. 342.

28. Krasin V.P., Soyustova S. I. Comparison of Liquid Metal Solution Model Predictions with Compatibility Data of Niobium with Liquid Sodium // J. Nucl. Mater. 2014. V. 451. P. 24.

29. Saboungi M.-L., Caveny D., Bloom I., Blander M. The Coordination Cluster Theory: Extension to Multicomponent Systems // Metallurg. Trans. A. 1987. V. 18. P. 1779.

30. Wagner C. Thermodynamics of Alloys. Addison Wesley. England. (GB) 1952. 171 p.

31. Lyublinski I.E., Evtikhin V. A., Pankratov V. Y., Krasin V. P. Numerical and Experimental Determination of Metallic Solubilities in Liquid Lithium, Lithium-Containing Nonmetallic Impurities, Lead and Lead-Lithium Eutectic // J. Nucl. Mater. 2014. V. 224. P. 288.

32. Lyublinski I.E., Evtikhin V. A., Krasin V. P. The Effect of Solutes on Thermodynamic Activity of Tritium in Liquid Lithium Blanket of Fusion Reactor // Fusion Technology. 1995. V. 28. P. 1223.

33. Schuhmann R. Solute Interactions in Multicomponent Solutions // Metallurg. Trans. B. 1985. V. 16. № 12. P. 807.

34. Krishnamurthy D., Varamban S. V., Thiruvengadasami A., Mathews C. K. Solubility of Oxygen in Sodium–Potassium Alloys // J. Less-Common Metals. 1989. V. 153. P. 363.

35. Krasin V.P., Lyublinski I. E., Soyustova S. I. Thermodynamic and Experimental Study of Corrosion Behavior of Vanadium-Based Alloy in Liquid Sodium–Potassium Coolant // J. Nucl. Mater. 2016. V. 480. P. 40.

36. Lindemer T.B., Besmann T. M., Jonson C. E. Thermodynamic Review and Calculations – Alkali–Metal Oxide Systems with Nuclear Fuels, Fission Products, and Structural Materials // J. Nucl. Mater. 1981. V. 100. P. 178.

37. Noden J.D. A General Equation for the Solubility of Oxygen in Liquid Sodium // J. British Nucl. Energy Soc. 1973. V. 12(1). P. 57.

38. Krishnamurthy D., Thiruvengadasami A., Bhat N. P., Mathews C. K. Solubility of Oxygen in Liquid Potassium // J. Less-Common Metals. 1987. V. 135. P. 285.

Система Orphus

Loading...
Up