views: 1207
Readers community rating: votes 0
1. Vockrodt S., Leithner R., Schiller A. et al. Firing Technique Measures for Increased Efficiency and Minimization of Toxic Emissions in Kasakh Coal Firing // 19th German Conf. on Flames, Combustion and Incineration. Germany, Berlin: VDI Berichte. 1999. V. 1492. R. 93.
2. Messerle V.E., Ustimenko A. B., Bolegenova S. A. et al. Reduction of Noxious Substance Emissions at the Pulverized Fuel Combustion in the Combustor of the BKZ?160 Boiler of the Almaty Heat Electropower Station Using the “Overfire Air” Technology // Thermophysics and Aeromechanics. 2016. V. 23. P. 125.
3. Bekmukhamet A., Beketayeva M., Gabitova Z. et al. 3D Modeling of Heat and Mass Transfer During Combustion of Solid Fuel in Bkz?420–140–7c Combustion Chamber of Kazakhstan // J. Appl. Fluid Mech. 2016. P. 699.
4. Askarova A.S., Bolegenova S. A., Maksimov V. Yu., Bekmukhamet A., Beketaeva M. T., Gabitova Z. Kh. Vychislitel'nyj metod issledovaniya goreniya tverdogo topliva v kamerakh sgoraniya TEhTs // TVT. 2015. T. 53. № 5. S. 792.
5. Heierle E., Manatbayev R., Yergaliyeva A. et al. CFD Study of Harmful Substances Production in Coal-Fired Power Plant of Kazakhstan // Bulg. Chem. Commun. 2016. V. 48. P. 260.
6. Askarova A., Bolegenova S., Maximov V. et al. Control of Harmful Emissions Concentration into the Atmosphere of Megacities of Kazakhstan Republic // IERI Procedia. 2014. V. 10. R. 252.
7. Gorokhovski M., Chtab-Desportes A., Voloshina I., Askarova A. Stochastic Simulation of the Spray Formation Assisted by a High Pressure // AIP Conf. Proc. Xian, 2010. V. 1207. P. 66.
8. Zarubin V.S., Kuvyrkin G. N., Savel'eva I. Yu. Kriticheskaya i optimal'naya tolschiny teploizolyatsii pri radiatsionno-konvektivnom teploobmene // TVT. 2016. T. 54. № 6. S. 883.
9. Askarova A., Bolegenova S., Bolegenova S., Bekmukhamet A., Maximov V., Beketayeva M. Numerical Experimenting of Combustion in the Real Boiler of CHP // Int. J. Mech. 2013. V. 7. R. 343.
10. Askarova A., Messerle V., Ustimenko A. et al. Numerical Simulation of the Coal Combustion Process Initiated by a Plasma Source // Thermophysics and Aeromechanics. 2014. V. 21. P. 747.
11. Kudinov I.V., Kudinov V. A., Kotova E. V. Dopolnitel'nye granichnye usloviya v nestatsionarnykh zadachakh teploprovodnosti // TVT. 2017. T. 55. № 4. S. 556.
12. Leithner R., Nugymanova A., Beketayeva M. et al. Computational Modeling of Heat and Mass Transfer Processes in Combustion Chamber at Power Plant of Kazakhstan // MATEC Web of Conf. CSCC2016. Greece. 2016. P. 5.
13. Askarowa A.S., Karpenko E. I., Messerle V. E., Ustimenko A. Plasma Enhancement of Combustion of Solid Fuels // J. High Energy Chem. 2006. V. 40. P. 111.
14. Askarowa A., Buchmann M. Structure of the Flame of Fluidized-Bed Burners and Combustion Processes of High-Ash Coal // 18th Dutch-german Conference on Flames: Gesell Energietech. “Combustion and Incineration”. Berlin: VDI Verichte, 1997. P. 241.
15. Beketayeva M.T., Maximov Yu.V., Ospanova Sh.S., Gabitova Z. K. Numerical Modeling of Turbulence Characteristics of Burning Process of the Solid Fuel in BKZ?420–140–7c Combustion Chamber // Int. J. Mechanics. 2014. V. 8. P. 112.
16. Glarborg P., Jensen A. D., Johnsson J. E. Fuel Nitrogen Conversion in Solid Fuel Fired Systems // Prog. Energy Combust. Sci. 2003. V. 29. P. 89.
17. Varnatts Yu., Maas U. Gorenie. Fizicheskie i khimicheskie aspekty. M.: Fizmatlit, 2003. 352 s.
18. Beketayeva M., Ospanova Sh., Gabitova Z. K. et al. Investigation of Turbulence Characteristics of Burning Process of the Solid Fuel in BKZ 420 Combustion Chamber // WSEAS Trans. Heat Mass Transfer. 2014. V. 9. P. 39.
19. Karpenko E.I., Karpenko Yu.E., Messerle V. E. et al. Mathematical Modelling of the Processes of Solid Fuel Ignition and Combustion at Combustors of the Power Boilers // 7th Int. Fall Seminar on Propellants. “Explosives and Pyrotechnics”. Xian, 2007. P. 672.
20. Askarova A., Bolegenova S., Bolegenova S. et al. Influence of Boundary Conditions to Heat and Mass Transfer Processes // Int. J. Mech. 2016. V.10. P. 320.
21. Askarova A.S., Bolegenova S. A., Bekmuhamet A., Maximov V. Yu. Mathematical Simulation of Pulverized Coal in Combustion Chamber // Procedia Eng. 2012. V. 42. P. 1259.
22. Gidaspov V.Yu., Severina N. S. Chislennoe modelirovanie detonatsii propano-vozdushnoj goryuchej smesi s uchetom neobratimykh khimicheskikh reaktsij // TVT. 2017. T. 55. № 5. S. 795.
23. Patankar S. Numerical Heat Transfer and Fluid Flow. N.Y.: Hemisphere Publ. Corp., 1980. 152 p.
24. Askarova A.S., Lavrichsheva Ye., Leithner R. et al. Combustion of Low-Rank Coals in Furnaces of Kazakhstan Coal-firing Power Plants // VDI Berichte. 2007. № 1088. P. 497.
25. Heierle Ye., Leithner R., Muller H., Askarova A. CFD Code FLOREAN for Industrial Boilers Simulations // WSEAS Trans. Heat Mass Transfer. 2009. V. 4. № 4. P. 98.
26. Lockwood F., Shah N. An Improved Flux Model for Calculation of Radiation Heat Transfer in Combustion Chambers // ASME–AIChE Heat Transfer Conf. Salt Lake City, 1976. P. 2.
27. Leithner R. Numerical Simulation. Computational Fluid Dynamics CFD: Course of Lecture. Braunschweig, 2006. 52 p.
28. Askarova A.S., Messerle V. E., Ustimenko A. B., Bolegenova S. A., Maksimov V. Yu., Gabitova Z. Kh. Chislennoe modelirovanie goreniya pyleugol'nogo topliva v kamere sgoraniya ehnergeticheskogo kotla // TVT. 2015. T. 53. № 3. S. 467.
29. Askarova A., Bolegenova S., Bekmukhamet A., Ospanova Sh., Gabitova Z. Using 3D Modeling Technology for Investigation of Conventional Combustion Mode of BKZ?420–140–7c Combustion Chamber // J. Eng. Appl. Sci. 2014. V. 9. № 1. P. 24.
30. Askarova A.S., Bolegenova S. A., Maksimov V. Y., Bekmuhamet A., Ospanova S. S. Numerical Research of Aerodynamic Characteristics of Combustion Chamber BKZ?75 Mining Thermal Power Station // Procedia Eng. 2012. V. 42. P. 1250.
31. Ovchinnikov V.A., Yakimov A. S. Matematicheskoe modelirovanie vliyaniya sherokhovatosti poverkhnosti i unosa massy na teplovuyu zaschitu // TVT. 2017. T. 55. № 5. S. 800.
32. Aliyarov B.K., Aliyarova M. B. Szhiganie kazakhstanskikh uglej na TEhS i na krupnykh kotel'nykh: opyt i perspektivy. Almaty, 2014. 306 s.
33. Teplovoj raschet kotlov: normativnyj metod. SPb.: Izd-vo AOOT NPO TsKTI, 1998. 270 s.