views: 1287
Readers community rating: votes 0
1. Krizhevsky A., Sutskever I., Hinton G.E. ImageNet Classification with Deep Convolutional Neural Networks // Advances in Neural Information Processing Systems. 2012. V.25. P.1097–1105.
2. Guo Y. Zhang L., Hu Y. MS-Celeb-1M: A Dataset and Benchmark for Large Scale Face Recognition // European Conf. on Computer Vision. Amsterdam, 2016.
3. Parkhi O. M., Vedaldi A., Zisserman A. Deep Face Recognition // British Machine Vision Conf. Swansea, UK, 2015.
4. Desyatchikov A.A., Kovkov D.V., Lobantsov V.V. i dr. Kompleks algoritmov dlya ustojchivogo raspoznavaniya cheloveka // Izv. RAN. TiSU. 2006. № 6. P.119–130.
5. Vizil'ter Yu.V., Zheltov S.Yu. Ispol'zovanie proektivnykh morfologij v zadachakh obnaruzheniya i identifikatsii ob'ektov na izobrazheniyakh // Izv. RAN. TiSU. 2009. № 2. P.125–138.
6. Ishutin A.A., Kikin I.S., Sebryakov G.G. Algoritmy obnaruzheniya, lokalizatsii i raspoznavaniya optiko-ehlektronnykh izobrazhenij gruppy izolirovannykh nazemnykh ob'ektov dlya inertsial'no-vizirnykh sistem navigatsii i navedeniya letatel'nykh apparatov // Izv. RAN. TiSU. 2016. №2. P.85.
7. Kuznetsov V.D., Matveev I.A., Murynin A.B. Identifikatsiya ob'ektov po stereoizobrazheniyam. II.Optimizatsiya informatsionnogo prostranstva // Izv. RAN. TiSU. 1998. № 4. P.50–53.
8. Matveev I.A., Murynin A.B. Identifikatsiya ob'ektov po stereoizobrazheniyam. Optimizatsiya algoritmov vosstanovleniya poverkhnosti // Izv. RAN. TiSU. 1998. № 3. P.149–155.
9. Csurka G. Domain Adaptation for Visual Applications: A Comprehensive Survey // Advances in Computer Vision and Pattern Recognition. Springer, 2017.
10. Gatys L. A., Ecker A.S., Bethge M. A Neural Algorithm of Artistic Style // Cornell University Library arXiv. 2015. V.1508.06576.
11. Goodfellow I., Pouget-Abadie J., Mirza M. Generative Adversarial Networks // Advances in Neural Information Processing Systems. 2014. V.27. P.2672–2680.
12. Zhu J., Park T., Isola P. Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks // Intern. Conf. on Computer Vision. Venice, 2017.
13. Fawcett T. An Introduction to ROC Analysis // Pattern Recogn. Lett. 2006. №27. P.861–874.
14. Schroff F., Kalenichenko D., Philbin J. FaceNet: A Unified Embedding for Face Recognition and Clustering // Conf. on Computer Vision and Pattern Recognition. Boston, MA, 2015.
15. Grgic M., Delac K., Grgic S. SCface — Surveillance Cameras Face Database // Multimedia Tools Appl. 2011. №51. P.863–879.
16. Yi D., Lei Z., Liao S. Learning Face Representation from Scratch // Cornell University Library arXiv. 2014. V1411.7923.
17. Baldi P. Autoencoders, Unsupervised Learning and Deep Architectures // Intern. Conf. on Unsupervised and Transfer Learning Workshop. Bellevue, US, 2011. №27. P.37–50.
18. He K., Zhang X., Ren S. Deep Residual Learning for Image Recognition // Conf. on Computer Vision and Pattern Recognition. Las Vegas, 2016.
19. Johnson J., Alahi A., Li. F.F. Perceptual Losses for Real-Time Style Transfer and Super-Resolution // European Conf. on Computer Vision. Amsterdam, 2016.
20. Isola P., Zhu J.Y., Zhou T. Image-to-Image Translation with Conditional Adversarial Networks // Conf. on Computer Vision and Pattern Recognition. Honolulu, 2017.