Development of propositions and models of classical equilibrium thermodynamics and their application in energy research

Publication type Article
Status Published
Affiliation: Melentiev Energy Systems Institute of Siberian Branch of the Russian Academy of Sciences
Address: Russian Federation
Journal nameIzvestiia Rossiiskoi akademii nauk. Energetika
EditionIssue 6

The paper is concerned with further development of thermodynamics which is related to the improvement of computers and information technologies. A sharp increase in the possibilities of applying simple and universal thermodynamic principles of conservation, equilibrium and extremality is demonstrated. The methods of step-by-step and one-dimensional circuit modeling are proposed to implement these possibilities. When constructing the models of the considered systems, the mathematical relationships between the laws of conservative and dissipative systems are established and used. The research proves the admissibility of equilibrium modeling of irreversible processes, and degradation and self-organization phenomena. Given the expansion of the field of application and the increase in the computational tools, changes are introduced into the interpretation of the basic concepts and propositions of equilibrium thermodynamics. The concept of equilibrium is generalized. The links of the second law with the principles of parsimony are noted. The usefulness of the corrections introduced in the thermodynamic theory is illustrated by an analysis of energy problems: combustion and processing of fossil fuels, anthropogenic pollution of the atmosphere, calculation of operating conditions and optimization of real transport and conventional networks, development of integrated energy systems.

Keywordsthermodynamics, equilibrium, extremality, circuit theory, transport circuit, conventional circuit, mathematical modeling, mathematical programming, combustion, ecology, economy, integrated energy system
AcknowledgmentThe work was performed as part of project III.17.4.1 of the program for basic research of the Siberian Branch of the Russian Academy of Sciences, reg. No. AAAA-A17–117030310432–9.
Publication date16.01.2019
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 757

Readers community rating: votes 0

1. Ehjnshtejn A. Tvorcheskaya avtobiografiya // Fizika i real'nost'. M.: Nauka, 1985. S. 131–166.

2. Karno S. Razmyshleniya o dvizhuschej sile ognya i mashinakh, sposobnykh razvivat' ehtu silu // Vtoroe nachalo termodinamiki. M. – L.: Gostekhizdat, 1934. S. 17–62.

3. Kirkhgof G. O prokhozhdenii ehlektricheskogo toka cherez ploskuyu plastinu, naprimer, krugloj formy // Izbr, trudy. M.: Nauka, 1988. S. 155–165.

4. Maksvell D.K. Traktat ob ehlektrichestve i magnetizme. M.: Nauka, 1989. T. 1. 416 s.

5. Onsager L. Reciprocal Relations in Irreversible Processes. I // Phys. Rev. 1931. № 37. P. 405–426.

6. Onsager L. Reciprocal Relations in Irreversible Processes. II // Phys. Rev. Vol. 931. № 38. P. 2265–2279.

7. Prigozhin I.R. Vvedenie v termodinamiku neobratimykh protsessov. M.: Izd. inostr. lit., 1960. 127 s.

8. Ehjnshtejn A. Ehlementarnaya teoriya brounovskogo dvizheniya //Sobr. nauch. tr. M.: Nauka, 1966. T. 3. S. 155–163.

9. Ehjnshtejn A. O printsipe otnositel'nosti i ego sledstviyakh // Sobranie nauchnykh trudov. M.: Nauka, 1965. T. 1. S. 65–112.

10. Landau L.D. Sobranie trudov. M.: Nauka, 1969. T. 1. 512 s.

11. Bellman R. Dinamicheskoe programmirovanie. M.: Izd-vo inostr. lit., 1960. 400 s.

12. Horn F., Jackson R. General mass action kinetics // Arch. Rat. Mech. Anal. 1972. Vol. 47, № 2. Pp. 81–116.

13. Yablonsky G.S., Bykov V.I., Gorban A.N., Elokhin V.I. Kinetic models of catalytic reaction. Amsterdam: Elsevier, 1991. 400 r.

14. Gorban' A.N. Obkhod ravnovesiya: Uravneniya khimicheskoj kinetiki i ikh termodinamicheskij analiz. Novosibirsk: Nauka, 1984. 226 s.

15. Gorban' A.N., Kaganovich B.M., Filippov S.P. Termodinamicheskie ravnovesiya i ehkstremumy: Analiz oblastej dostizhimosti i chastichnykh ravnovesij v fiziko-khimicheskikh i tekhnicheskikh sistemakh. Novosibirsk: Nauka, 2001. 296 s.

16. Kaganovich B.M., Keiko A.V., Shamansky V.A. Equilibrium Thermodynamic Modeling of Dissipative Macroscopic Systems //Advances in Chemical Engineering. 2010. Vol. 39. Thermodynamics and kinetics of complex systems. Ch. 1. P. 1–74.

17. Kaganovich B.M. Ravnovesnaya termodinamika. Problemy i perspektivy. LAP Lambert Academic Publishing, 2015. 239 c.

18. Kaganovich B.M., Voropaj N.I., Stennikov V.A., Zarodnyuk M.S. Termodinamika, teoriya tsepej i ikh sovmestnye primeneniya v ehnergeticheskikh issledovaniyakh // Izv. RAN. Ehnergetika. 2014. № 5. C. 3–15.

19. Kaganovich B.M. Voropaj N.I., Stennikov V.A. Problema nezamknutosti termodinamiki v sistemnom ehnergeticheskom analize // Izv. RAN. Ehnergetika. 2016. № 5. S. 57–66.

20. Kaganovich B.M. Voropaj N.I., Stennikov V.A., Novitskij N.N. Razvitie modelej i metodov teorii tsepej i ikh ehnergeticheskikh prilozhenij // Izv. RAN. Ehnergetika. 2017. № 6. S. 24–32.

21. Kaganovich B.M., Merenkov A.P., Balyshev O.A. Ehlementy teorii geterogennykh gidravlicheskikh tsepej. Novosibirsk: Nauka, 1997. 120 s.

22. Sumarokov S.V. Metod resheniya mnogoehkstremal'noj setevoj zadachi // Ehkonomika i matematicheskie metody. 1976. T. 12. № 5. S. 1016–1018.

23. Kaganovich B.M., Filippov S.P. Ravnovesnaya termodinamika i matematicheskoe programmirovanie. Novosibirsk: Nauka. Sib. otdelenie, 1995. 236 s.

Система Orphus