Fatty acids and antimicrobal properties of red table wine

 
PIIS250026270000673-5-1
DOI10.31857/S250026270000673-5
Publication type Article
Status Published
Authors
Affiliation: Prikaspijskij institut biologicheskix resursov Dagestanskogo nauchnogo centra RAN
Address: Russian Federation, Maxachkala
Affiliation: Prikaspijskij institut biologicheskix resursov Dagestanskogo nauchnogo centra RAN
Address: Russian Federation, Maxachkala
Affiliation: Prikaspijskij institut biologicheskix resursov Dagestanskogo nauchnogo centra RAN
Address: Russian Federation, Maxachkala
Affiliation: Prikaspijskij institut biologicheskix resursov Dagestanskogo nauchnogo centra RAN
Address: Russian Federation, Maxachkala
Affiliation: Prikaspijskij institut biologicheskix resursov Dagestanskogo nauchnogo centra RAN
Address: Russian Federation, Maxachkala
Affiliation: Prikaspijskij institut biologicheskix resursov Dagestanskogo nauchnogo centra RAN
Address: Russian Federation, Maxachkala
Affiliation: Prikaspijskij institut biologicheskix resursov Dagestanskogo nauchnogo centra RAN
Address: Russian Federation, Maxachkala
Journal nameRossiiskaia selskokhoziaistvennaia nauka
EditionNumber 5
Pages72-77
Abstract

Presents research findings on fatty acids and antibacterial properties of red wine, which is known for its unique physiological effect on human body. Subjects of the research were red table wines (the vintage of 2016) produced at the Derbent sparkling wine factory from grapes gathered in the Derbent Region of Daghestan Republic. Wines were produced from Cabernet grape variety using selective Saccharomyces cerevisiae Y-4270 (experiment) and Saccharomyces cerevisiae Derbent-19 (control). Fatty acids were studied by gas-liquid chromatography; antibacterial properties against gram-positive bacteria were studied by a standard agar diffusion technique. 28 fat acids (C10-C22) were identified in all samples of wine. A test sample was distinct in decreasing, unwanted to living organisms, saturated fatty acids by 8,63 % as the factor of nutrition, which increases the level of cholesterin and atherogenic lipoprotein. There was an increase by 18,67 % in the total quantity of unsaturated fatty acids due to the dominance of С18:2, С18:2ω-6, С24:1ω-9. We found the double predominance of polyunsaturated fatty acids, monounsaturated by 9,56 %, and polyenoic fatty acids by 12,09 %, which contribute to the composition of wine flavor. The quantity of ω-6 acids is 42,12 % higher, mainly, owing to linoleic acid C18:2ω-6 (by 16,48 %) and γ-linolenic C18:3ω-6 (almost by a factor of 4). It was revealed a significant content of ω-3 acids (almost by a factor of 11): linoleic C18:3ω-3, eicosapentaenoic C20:5ω-3, docosahexaenoic C22:6ω-3 acids, which improve lipid metabolism and influence positively on immune system. In general, a total content of ω-9 acids was sufficiently high in both samples of wine due to the predominance of oleinic acid C18:1ω-9. The experimental red table wine is found to possess antibacterial properties against bacteria Shigella sonnei, Salmonella typhimurium, Klebsiella pneumoniae, Escherichia coli, Proteus vulgaris, Proteus mirabilis, Staphylococcus saprophyticus, what determined to the constituent conditions of wine, including polyphenolic and antioxidant compounds, providing improved biochemical and nutrient properties of the product.

 

KeywordsRed table wine, fatty acids, antibacterial activity
Received21.08.2018
Publication date14.11.2018
Number of characters14892
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной
1 С древних времен красное вино использовали в качестве антисептика и анальгетика для лечения дерматологических заболеваний и расстройства пищеварения. Известен "французский парадокс", который связывают с употреблением вина, обладающего противовоспалительными и антиоксидантными свойствами, а также кардиозащитным действием при ишемической болезни миокарда [1-3]. Вино оказывает благоприятное физиологическое воздействие на организм человека, в том числе обогащает его жирными кислотами, обеспечивая высокий уровень их в эритроцитах и тромбоцитах крови, обладает уникальным антисклеротическим действием [4], приводит к снижению окислительного стресса при сахарном диабете и осмотической хрупкости эритроцитов [5].
2 Поскольку вино представляет собой сложную смесь соединений, многие из которых находятся в очень низких концентрациях, предполагают, что эффективность вина в качестве антибактериального агента связана фактически не с отдельными комбинациями этанола, органических кислот, фенолов, ресвератрола, кислым рН, а синергическим воздействием всех компонентов [6].
3 Известны исследования жирных кислот в коммерческих красных винах [7-9]. Они влияют на образование летучих ароматических метаболитов в вине, включая эфиры, ацетат, высшие спирты [10]. Отмечено особое свойство этиловых эфиров жирных кислот в образовании летучих соединений аромата вина даже на субсенсорном пороговом уровне [11-13]. Жирные кислоты демонстрируют широкий спектр антимикробного действия на микобактерии, археи, нитевидные грибы, дрожжи, вирусы, простейшие и эукариотические водоросли [14-16].
4 В многочисленных исследованиях приведены антибактериальные свойства вина против патогенных бактерий Bacillus cereus, Yersinia enterocolitica, Campylobacter jejuni, Campylobacter coli, Escherichia coli, Salmonella typhimurium, Listeria innocua, Listeria monocytogenes, и Staphylococcus aureus, Salmonella enteritidis, Shigella sonnei, Helicobacter pylori и Escherichia coli, Streptococcus enteritidis, Vibrio parahaemolyticus, Cаndida albicans, Pseudomonas aeruginosa, Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus agalactiae, Streptococcus uberis и др. [17-23]. Показано употребление красного вина во время вспышек пищевых инфекций, таких как сальмонеллез и гепатит, радиационных катастроф, что подтверждают современные исследования [23, 24].
5 Климатические условия региона и географическое происхождение винограда являются важным фактором, воздействующим на физиолого-биохимические показатели красного столового вина. В связи с этим представляют интерес проведенные впервые исследования содержания жирных кислот и антибактериальных свойств красного вина из винограда сорта Каберне, произрастающего на территории Дербентского района Республики Дагестан. Одно из существенных качеств этого сорта – создание уникальных вин с кондициями, которые способствуют сохранению микробиологической стойкости и качественных показателей длительное время.

views: 1489

Readers community rating: votes 0

1. Guilford J.M., Pezzuto J.M. Wine and health: a review // American Journal of Enology and Viticulture. - 2011. - V. 62 (4). - P. 471–486.

2. Markoski M.M., Garavaglia J., Oliveira A., Olivaes J., Marcadenti A. Review. Molecular Properties of Red Wine Compounds and Cardiometabolic Benefits // Nutrition and Metabolic Insights. - 2016. - V. 9. - P. 51-57.

3. Motoaki S., Partha S.R., Gautam M., Dipak K.D. Das Myocardial Protection with Red Wine Extract // Journal of Cardiovascular Pharmacology. - 2000. - V. 35 (2). - P. 263-268.

4. Urquiaga I., Guasch V., Marshall G., San Martín A., Castillo O., Rozowski J., Leighton F. Effect of Mediterranean and Occidental Diets, and Red Wine, on Plasma Fatty Acids in Humans. An Intervention Study // Biological research. - 2004. - V. 37 (2). - P. 253-261.

5. Pazzini C.E.F., Colpo A.C., Poetini M.R., Pires C.F., Camargo V.B., Mendez A.S.L., Azevedo M.L., Soares J.C.M., Folmer V. Effects of Red Wine Tannat on Oxidative Stress Induced by Glucose and Fructose in Erythrocytes in Vitro // International Journal of Medical Sciences. - 2015. - V. 12 (6). - P. 478-486.

6. Cueva C., Gil-Sánchez I., Ayuda-Durán B., González-Manzano S., González-Paramás A.M., Santos-Buelga C., Bartolomé B., Moreno-Arribas M.B. Review An Integrated View of the Effects of Wine Polyphenols and Their Relevant Metabolites on Gut and Host Health // Molecules. - 2017. - V. 22. - P. 99-114.

7. Yunoki K, Tanji M, Murakami Y., Yasui Y., Hirose S., Ohnishi M. Fatty acid compositions of commercial red wines // Biosci Biotechnol Biochem. - 2004. - V. 68 (12). - P. 2623-2626.

8. Yunoki K., Yasui Y., Hirose S., Ohnishi M. Fatty acids in must prepared from 11 grapes grown in Japan: Comparison with wine and effect on fatty acid ethyl ester formation // Lipids. - 2005. - V. 40. - P. 361-367.

9. Yunoki K., Tanji M., Murakami Y., Yasui Y. Fatty acid compositions of commercial red wines article // Bioscience biotechnology and biochemistry. - 2005. - V. 68 (12). - P. 2623-2626.

10. Duan L.L., Shi Y., Jiang R., Yang Q., Wang Y.Q., Liu P.T., Duan C.Q., Yan G.L. Effects of Adding Unsaturated Fatty Acids on Fatty Acid Composition of Saccharomyces cerevisiae and Major Volatile Compounds in Wine // S. Afr. J. Enol. Vitic.– 2015.– V. 36.– № 2.– P. 285-295.

11. Arita K., Honma T., Suzuki S. Comprehensive and comparative lipidome analysis of Vitis vinifera L. cv. Pinot Noir and Japanese indigenous V. vinifera L. cv. Koshu grape berries // Plos. One.– 2017.– P. 1-11.

12. Belka I., Ruiz J., Esteban-Fernández A., Navascués E., Marquina D., Santos A., Victoria Moreno-Arribas M. Microbial Contribution to Wine Aroma and Its Intended Use for Wine Quality Improvement // Molecules.– 2017.– V. 22.– № 2.– P. 189-217.

13. Cheng G., Liu Y., Yue T.-X., Zhang Z.-W. Comparison between aroma compounds in wines from four Vitis vinifera grape varieties grown in different shoot positions // Food Science and Technology. Campinas.– 2015.– V. 35(2).– P. 237-246.

14. Desbois A.P., Smith V.J. Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential // Applied Microbiology and Biotechnology. - 2010. - V. 85. - P. 1629-1642.

15. Fernandez-Lopez R., Machón C., Longshaw C.M., Martin S., Molin S., Zechner E.L., Espinosa M., Lanka E. Unsaturated fatty acids are inhibitors of bacterial conjugation // Microbiology. - 2005. - V. 151. - P. 3517-3526.

16. Friedman M. Antibacterial, Antiviral, and Antifungal Properties of Wines and Winery Byproducts in Relation to Their Flavonoid Content. Review // J. Agric. Food Chem.– 2014.– V. 62 (26).– P. 6025–6042.

17. Anitha M., Vyshnavi R., Raveena S. Detection of Antibiotic Sensitivity in Multi Drug Resistant Microorganisms using Red Wine // International Journal of Scientific and Research Publications. - 2014. - V. 4 (6). - P. 1-7.

18. Detha A.I.R., Datta F.U. Antimicrobial activity of traditional wines (Sopi and Moke) against Salmonella sp. and Escherichia coli // Journal of Advanced Veterinary and Animal Research. - 2016. - V. 3 (3). - P. 282-285.

19. Cho H.S., Lee J.-H., Cho M.H., Lee J. Red wines and flavonoids diminish Staphylococcus aureus virulence with anti-biofilm and anti-hemolytic activities // Biofouling. - 2015. - 31 (1). - P. 1-11.

20. Fernandes J., Gomes F., Couto J.A. et al. The antimicrobial effect of wine on Listeria innocua in a model stomach system // Food Control. - 2007. - V. 18. - P. 1477–1483.

21. Gañan M., Martínez-Rodríguez A.J., Carrascosa A.V. Antimicrobial activity of phenolic compounds of wine against Campylobacter jejuni // Food Control. - 2009. - V. 20. - P. 739–742.

22. Radovanović A., Arsić B., Radovanović V., Jovančičević B., Nikolić V. Broad-spectrum of antimicrobial properties of commercial wines from different Vitis vinifera L. varieties // World J Microbiol Biotechnol. - 2017. - V. 33. - P. 1-18.

23. Walters D, Raynor L, Mitchell A., Walker R., Walker K. Antifungal activities of four fatty acids against plant pathogenic fungi // Mycopathologia. - 2004. - V. 157. - P. 87-90.

24. Sabadashka M.; Sybirna N.Reduction of radiation-induced nitrative stress in leucocytes and kidney cells of rats upon administration of polyphenolic complex concentrates from red wine // Cytology and Genetics. - 2016. - V. 5. - № 3. - P. 187-195.

25. Patent RF № 2636024, kl. C12N1/16; C12G1/00. Shtamm drozhzhej Saccharomyces serevisiaeY-4270 dlya proizvodstva krasnykh stolovykh vin. – Opubl. 17.11.2017. - Byul. № 32.

26. Zolotov Yu.A. Osnovy analiticheskoj khimii. - M.: Vysshaya shkola, 2002. - ISBN 5-06-003560-3. - s. 481.

27. Deans S.G., Ritchie G. Antibacterial properties of plant essential oils. International Journal of Food Microbiology. - 1987. - V. 5. - № 2. - P. 165-180.

28. Pohl C.H., Kock J.L.F., Thibane V.S. Antifungal free fatty acids: a review. In: Méndez-Vilas A, Ed. Science against microbial pathogens: Communicating current research and technological advances, Badajoz: Formatex. - 2011. - V. 1. - P. 61-71.

29. Liu S., Weibin R., Jing L., Hua X., Jingan W., Yubao G., Jingguo W. Biological control of phytopathogenic fungi by fatty acids // Mycopathologia. - 2008. - V. 166. - P. 93-102.

30. Ohira H., Tsutsui W.,Fujioka Y. Are Short Chain Fatty Acids in Gut Microbiota Defensive Players for Inflammation and Atherosclerosis? // J Atheroscler Thromb. - 2017. - V. 24 (7). - P. 660–672.

31. Thibane V.S., Kock J.L.F., Ells R., Wyk P.W.J, Pohl C.H. Effect of marine polyunsaturated fatty acids on biofilm formation of Candida albicans and Candida dubliniensis // Mar Drugs. - 2010. - V. 8. - P. 2597-2604.

32. Wille J.J., Kydonieus A. Palmitoleic acid isomer (C16:1delta6) in human skin sebum is effective against gram-positive bacteria // Skin Pharmacol Appl Skin Physiol. - 2003. - V. 16 (3). - P. 176–187.

33. Lyudinina A.Yu., Bojko E.R. Funktsional'naya rol' mononenasyschennykh kislot v organizme cheloveka // Uspekhi fiziologicheskikh nauk. - 2013. - T. 44. - Vyp. 4 (4). - S. 51-64.

34. Saltman Y, Johnson T, Wilkinson K, Bastian S. Australian wine consumers’ acceptance of and attitudes toward the use of additives in wine and food production // 2015.– V. 7.– P. 83-92.

35. Yusen Wu, Shuyan Duan, Liping Zhao, Zhen Gao, Meng Luo, Shiren Song, Wenping Xu, Caixi Zhang, Chao Ma. Shiping Wang Aroma characterization based on aromatic series analysis in table grapes // Scientific Reports.– V. 6.– P. 31116.

(Таблица_1..jpg, 201 Kb) [Download]

(Рисунок_1..jpg, 62 Kb) [Download]

Система Orphus

Loading...
Up