The Institute of the International Nuclear Reactor

 
PIIS0032874X0001344-7-1
DOI10.31857/S0032874X0000885-2
Publication type Article
Status Published
Authors
Occupation: chief researcher
Affiliation: Ioffe Physical-Technical Institute, RAS
Address: Russian Federation, Saint-Petersburg
Affiliation: Ioffe Physical-Technical Institute, RAS
Address: Russian Federation, Saint-Petersburg
Affiliation: Ioffe Physical-Technical Institute, RAS
Address: Russian Federation, Saint-Petersburg
Affiliation: Ioffe Physical-Technical Institute, RAS
Address: Russian Federation, Saint-Petersburg
Journal namePriroda
EditionIssue №9
Pages12-21
Abstract

International Thermonuclear Experimental Reactor (ITER) is currently under construction in France. Three diagnostic systems intended for control and measurement of ITER plasma are being developed in Ioffe Institute as a part of the Russian Federation international responsibilities. They are the neutral particle diagnostic system (NPA diagnostics), the divertor Thomson scattering (DTS) diagnostics system, and the gamma-ray spectrometry system (GAMMA).The main goal of NPA diagnostics is to monitor the density ratio of deuterium and tritium ions in the burning plasma by measuring atomic fluxes emitted by plasma as a result of ion neutralization processes. The DTS diagnostics detects the laser light scattered by plasma electrons in the divertor, allowing monitoring of divertor power loads and serves for the reactor protection from breakdown. The Gamma-ray diagnostics registers continuous and line gamma-ray spectra emitted by the ITER plasma. Continuous spectrum measurements will be used for the ITER protection as they allow monitoring of the intensity and the growth rate of the runaway electron beam. In turn, line spectrum measurements will be used to determine the fast ion confinement time in the ITER plasma.

Keywordsthermonuclear reactor ITER, atom analysers, Thomson scattering, gamma-ray spectrometry
Received15.10.2018
Publication date15.10.2018
Number of characters826
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 2237

Readers community rating: votes 0

1. Sakharov A.D., Tamm I.E.The theory of magnetic thermonuclear reactor. Plasma physics and the problem of controlled nuclear fusion reactions. M.A.Leontovich (ed.). Moscow, 1958; 1: 3–42. (In Russ.).

2. Afrosimov V.V., Gladkowskii I.P., Kislyakov A.I., Petrov M.I. Mass-analysis of the neutral particle flux emitted by the plasma of “Alpha” installation. Soviet Physics-Technical Physics. 1963; 8: 1467–1475.

3. Afrosimov V.V., Petrov M.P. Ion energy distribution in tokamak Devices. Soviet Physics-Technical Physics. 1968; 12: 1467–1475.

4. Petrov M.P. Passive neutral particle analysis. Fusion Physics. Vienna, 2012; 4.2.6: 393–399.

5. Afanasyev V.I., Chernyshev F.V., Kislyakov A.I. et al. Neutral particle analysis on ITER — present status and prospects. Nuclear Instruments and Methods in Physics Research. 2010; A 621: 456–467.

6. Afanasyev V.I., Mironov M.I., Kislyakov A.I. et al. Neutral particle analysis on ITER and requirements for DEMO. AIP Conf. Proc. 2008; 988: 177–184.

7. Mukhin E.E., Semenov V.V., Razdobarin A.G. et al. First mirrors in ITER: material choice and deposition prevention/cleaning techniques. Nucl. Fusion. 2012; 52: 013017.

8. Razdobarin A.G., Dmitriev A.M., Bazhenov A.N. et al. RF discharge for in situ mirror surface recovery in ITER. Nucl. Fusion. 2015; 55: 093022.

9. Mukhin E., Andrew P., Babinov N. A. et al. Hardware solutions for ITER divertor Thomson scattering. Fusion Eng. Des. 2017; 123(11): 686–689.

10. Mukhin E.E., Pitts R. A., Andrew P. et al. Physical aspects of divertor Thomson scattering implementation on ITER. Nucl. Fusion. 2014; 54: 043007.

11. Razdobarin G.T., Semenov V.V., Sokolova L.V. et al. An absolute measurement of the neutral density profile in the tokamak plasma by resonance fluorescence on H-alpha line. Nucl. Fusion. 1979; 19(2): 1439–1446.

12. Gorbunov A.V., Mukhin E.E., Berik E.B. et al. Laser-induced fluorescence for ITER divertor plasma. Fusion Eng. Des. 2017; 123(11): 695–698.

13. Kiptily V.G., Cecil F.E., Medley S.S. Gamma ray diagnostics of high temperature magnetically confined fusion plasmas. Plasma Phys. Control. Fusion. 2006; 48: R59–R82.

14. Kiptily V.G., Gorini G., Tardocchi M. et al. Doppler broadening of gamma ray lines and fast ion distribution in JET plasmas. Nucl. Fusion. 2010; 50: 084001.

15. Kiptily V.G., Cecil F.E., Jarvis O.N. et al. γ-ray diagnostics of energetic ions in JET. Nucl. Fusion. 2002; 42: 999–1007.

16. Kiptily V.G., Van Eester D., Lerche E. et al. Fast ions in mode conversion heating (3He)—H plasmas in JET. Plasma Phys. Control. Fusion. 2012; 54: 074010.

17. Shevelev A.E., Khilkevitch E.M., Kiptily V.G. et al. Reconstruction of distribution functions of fast ions and runaway electrons in fusion plasmas using gamma-ray spectrometry with applications to ITER. Nucl. Fusion. 2013; 53: 123004.

18. Nocente M., Tardocchi M., Chugunov I. et al. Energy resolution of gamma-ray spectroscopy of JET plasmas with a LaBr3 scintillator detector and digital data acquisition. Rev. Sc. Instr. 2010; 81: 10D321.

19. Chugunov I.N., Shevelev A.E., Gin D.B. et al. Development of gamma-ray diagnostics for ITER. Nucl. Fusion. 2011; 51: 083010

20. Gin D., Chugunov I., Shevelev A. et al. Gamma ray spectrometer for ITER. AIP Conference Proceedings. 2014; 1612: 149.

Система Orphus

Loading...
Up