views: 2237
Readers community rating: votes 0
1. Sakharov A.D., Tamm I.E.The theory of magnetic thermonuclear reactor. Plasma physics and the problem of controlled nuclear fusion reactions. M.A.Leontovich (ed.). Moscow, 1958; 1: 3–42. (In Russ.).
2. Afrosimov V.V., Gladkowskii I.P., Kislyakov A.I., Petrov M.I. Mass-analysis of the neutral particle flux emitted by the plasma of “Alpha” installation. Soviet Physics-Technical Physics. 1963; 8: 1467–1475.
3. Afrosimov V.V., Petrov M.P. Ion energy distribution in tokamak Devices. Soviet Physics-Technical Physics. 1968; 12: 1467–1475.
4. Petrov M.P. Passive neutral particle analysis. Fusion Physics. Vienna, 2012; 4.2.6: 393–399.
5. Afanasyev V.I., Chernyshev F.V., Kislyakov A.I. et al. Neutral particle analysis on ITER — present status and prospects. Nuclear Instruments and Methods in Physics Research. 2010; A 621: 456–467.
6. Afanasyev V.I., Mironov M.I., Kislyakov A.I. et al. Neutral particle analysis on ITER and requirements for DEMO. AIP Conf. Proc. 2008; 988: 177–184.
7. Mukhin E.E., Semenov V.V., Razdobarin A.G. et al. First mirrors in ITER: material choice and deposition prevention/cleaning techniques. Nucl. Fusion. 2012; 52: 013017.
8. Razdobarin A.G., Dmitriev A.M., Bazhenov A.N. et al. RF discharge for in situ mirror surface recovery in ITER. Nucl. Fusion. 2015; 55: 093022.
9. Mukhin E., Andrew P., Babinov N. A. et al. Hardware solutions for ITER divertor Thomson scattering. Fusion Eng. Des. 2017; 123(11): 686–689.
10. Mukhin E.E., Pitts R. A., Andrew P. et al. Physical aspects of divertor Thomson scattering implementation on ITER. Nucl. Fusion. 2014; 54: 043007.
11. Razdobarin G.T., Semenov V.V., Sokolova L.V. et al. An absolute measurement of the neutral density profile in the tokamak plasma by resonance fluorescence on H-alpha line. Nucl. Fusion. 1979; 19(2): 1439–1446.
12. Gorbunov A.V., Mukhin E.E., Berik E.B. et al. Laser-induced fluorescence for ITER divertor plasma. Fusion Eng. Des. 2017; 123(11): 695–698.
13. Kiptily V.G., Cecil F.E., Medley S.S. Gamma ray diagnostics of high temperature magnetically confined fusion plasmas. Plasma Phys. Control. Fusion. 2006; 48: R59–R82.
14. Kiptily V.G., Gorini G., Tardocchi M. et al. Doppler broadening of gamma ray lines and fast ion distribution in JET plasmas. Nucl. Fusion. 2010; 50: 084001.
15. Kiptily V.G., Cecil F.E., Jarvis O.N. et al. γ-ray diagnostics of energetic ions in JET. Nucl. Fusion. 2002; 42: 999–1007.
16. Kiptily V.G., Van Eester D., Lerche E. et al. Fast ions in mode conversion heating (3He)—H plasmas in JET. Plasma Phys. Control. Fusion. 2012; 54: 074010.
17. Shevelev A.E., Khilkevitch E.M., Kiptily V.G. et al. Reconstruction of distribution functions of fast ions and runaway electrons in fusion plasmas using gamma-ray spectrometry with applications to ITER. Nucl. Fusion. 2013; 53: 123004.
18. Nocente M., Tardocchi M., Chugunov I. et al. Energy resolution of gamma-ray spectroscopy of JET plasmas with a LaBr3 scintillator detector and digital data acquisition. Rev. Sc. Instr. 2010; 81: 10D321.
19. Chugunov I.N., Shevelev A.E., Gin D.B. et al. Development of gamma-ray diagnostics for ITER. Nucl. Fusion. 2011; 51: 083010
20. Gin D., Chugunov I., Shevelev A. et al. Gamma ray spectrometer for ITER. AIP Conference Proceedings. 2014; 1612: 149.