Физтех — Международному ядерному реактору

 
Код статьиS0032874X0001344-7-1
DOI10.31857/S0032874X0000885-2
Тип публикации Статья
Статус публикации Опубликовано
Авторы
Должность: главный научный сотрудник
Аффилиация: Физико-технический институт имени А.Ф.Иоффе РАН
Адрес: Российская Федерация, Санкт-Петербург
Аффилиация: Физико-технический институт имени А.Ф.Иоффе РАН
Адрес: Российская Федерация, Санкт-Петербург
Аффилиация: Физико-технический институт имени А.Ф.Иоффе РАН
Адрес: Российская Федерация, Санкт-Петербург
Аффилиация: Физико-технический институт имени Иоффе РАН
Адрес: Российская Федерация, Санкт-Петербург
Название журналаПрирода
ВыпускВыпуск №9
Страницы12-21
Аннотация

В ФТИ имени А.Ф.Иоффе в счет международных обязательств России создаются три диагностических системы для измерения основных параметров плазмы и для контроля режима Международного термоядерного реактора ИТЭР, сооружаемого в настоящее время во Франции. Это система измерения потока атомов из плазмы с целью контроля изотопного соотношения термоядерного топлива D/T, система томсоновского рассеяния света лазера на электронах плазмы в диверторе с целью контроля энергонагрузки дивертора и защиты реактора от аварий, а также система измерения сплошного и линейчатого спектров гамма-излучения плазмы. Сплошной спектр используется для контроля развития интенсивности пучка убегающих электронов с целью защиты реактора от аварий. Линейчатый спектр гамма-излучения позволяет определять время удержания быстрых ионов в плазме реактора.

Ключевые словаТермоядерный реактор ИТЭР, атомные анализаторы, томсоновское рассеяние, гамма-спектрометрия
Получено15.10.2018
Дата публикации15.10.2018
Кол-во символов826
Цитировать   Скачать pdf Для скачивания PDF необходимо авторизоваться
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной.

всего просмотров: 2078

Оценка читателей: голосов 0

1. Сахаров А. Д., Тамм И.Е. Теория магнитного термоядерного реактора. Физика плазмы и проблема управляемых термоядерных реакций. Ред. М.А.Леонтович. М., 1958; 1: 3–42.

2. Афросимов В.В., Гладковский И.П., Кисляков А.И., Петров М.П. Масс-анализ потока нейтральных атомных частиц, испускаемых плазмой, на установке «Альфа». ЖТФ. 1963; 33(2): 205–212.

3. Афросимов В.В., Петров М.П. Об энергетических распределениях ионов в плазме на установках токамак. ЖТФ. 1967; 37(11): 1995–2007.

4. Petrov M.P. Passive neutral particle analysis. Fusion Physics. Vienna, 2012; 4.2.6: 393—399.

5. Afanasyev V.I., Chernyshev F.V., Kislyakov A.I. et al. Neutral particle analysis on ITER – present status and prospects. Nuclear Instruments and Methods in Physics Research. 2010; A 621: 456–467.

6. Afanasyev V.I., Mironov M.I., Kislyakov A.I. et al. Neutral particle analysis on ITER and requirements for DEMO. AIP Conf. Proc. 2008; 988: 177–184.

7. Mukhin E.E., Semenov V.V., Razdobarin A.G. et al. First mirrors in ITER: material choice and deposition prevention/cleaning techniques. Nucl. Fusion. 2012; 52: 013017.

8. Razdobarin A.G., Dmitriev A.M., Bazhenov A.N. et al. RF discharge for in situ mirror surface recovery in ITER. Nucl. Fusion. 2015; 55: 093022.

9. Mukhin E., Andrew P., Babinov N.A. et al. Hardware solutions for ITER divertor Thomson scattering. Fusion Eng. Des. 2017; 123(11): 686-689.

10. Mukhin E.E., Pitts R.A., Andrew P. et al. Physical aspects of divertor Thomson scattering implementation on ITER. Nucl. Fusion. 2014; 54: 043007.

11. Razdobarin G.T., Semenov V.V., Sokolova L.V. et al. An absolute measurement of the neutral density profile in the tokamak plasma by resonance fluorescence on H-alpha line. Nucl. Fusion. 1979; 19(2): 1439-1446.

12. Gorbunov A.V., Mukhin E.E., Berik E.B. et al. Laser-induced fluorescence for ITER divertor plasma. Fusion Eng. Des. 2017; 123(11): 695-698.

13. Kiptily V.G., Cecil F.E., Medley S.S. Gamma ray diagnostics of high temperature magnetically confined fusion plasmas. Plasma Phys. Control. Fusion. 2006; 48: R59-R82.

14. Kiptily V.G., Gorini G., Tardocchi M. et al. Doppler broadening of gamma ray lines and fast ion distribution in JET plasmas. Nucl. Fusion. 2010; 50: 084001.

15. Kiptily V.G., Cecil F.E., Jarvis O.N. et al. y-ray diagnostics of energetic ions in JET. Nucl. Fusion. 2002; 42: 9991007.

16. Kiptily V.G., Van Eester D., Lerche E. et al. Fast ions in mode conversion heating (3He)—H plasmas in JET. Plasma Phys. Control. Fusion. 2012; 54: 074010.

17. Shevelev A.E., Khilkevitch E.M., Kiptily V.G. et al. Reconstruction of distribution functions of fast ions and runaway electrons in fusion plasmas using gammaray spectrometry with applications to ITER. Nucl. Fusion. 2013; 53: 123004.

18. Nocente M., Tardocchi M., Chugunov I. et al. Energy resolution of gamma-ray spectroscopy of JET plasmas with a LaBr3 scintillator detector and digital data acquisition. Rev. Sc. Instr. 2010; 81: 10D321.

19. Chugunov I.N., Shevelev A.E., Gin D.B. et al. Development of gamma-ray diagnostics for ITER. Nucl. Fusion. 2011; 51: 083010.

20. Gin D., Chugunov I., Shevelev A. et al. Gamma ray spectrometer for ITER. AIP Conference Proceedings. 2014; 1612: 149.

Система Orphus

Загрузка...
Вверх