views: 1056
Readers community rating: votes 0
1. Liu Y.J., Mukherjee S., Nishimura N., Schanz M. at all Recent Advances and Emerging Applications of the Boundary Element Method// Appl. Mech. Rev. 2012, 64, 38 p.; doi: 10.1115/1.4005491.
2. Costabel M. Time-dependent problems with the boundary integral equation method, in: encyclopedia of Computational Mechanics. – John Wiley & Sons, Ltd., 2004. P. 703–721.
3. Bazhenov V.G., Igumnov L.A. Metody granichnykh integral'nykh uravnenij i granichnykh ehlementov v reshenii zadach trekhmernoj dinamicheskoj teorii uprugosti s sopryazhennymi polyami. M.: Fizmatlit, 2008. 352 s.
4. Vatul'yan A.O. Obratnye zadachi v mekhanike deformiruemogo tverdogo tela. M.: Fizmatlit, 2007. 224 s.
5. Hatzigeorgiou G.D., Beskos D. E. Dynamic inelastic structural analysis by the BEM: A review// Eng.Analysis with Boundary Elements. 2011. V. 35 (2). P. 159-169.
6. Hsiao G.C., Wendland W.L. Boundary Integral Equations. Berlin: Springer, 2008. 618 p.
7. Hatzigeorgiou G.D. Dynamic inelastic analysis with BEM: results and needs. In: Manolis GD, Polyzos D (eds) Recent advances in boundary element methods. Springer, Berlin, 2009. Pp 193–208.
8. Petushkov V.A. Chislennaya realizatsiya metoda granichnykh integral'nykh uravnenij primenitel'no k nelinejnym zadacham mekhaniki deformirovaniya i razrusheniya ob'emnykh tel // Sb. nauchnykh trudov ITPM SO AN SSSR Modelirovanie v mekhanike. T. 3(20). № 1. Novosibirsk. 1989. S. 133-156.
9. Petushkov V.A., Zysin V.I. Paket prikladnykh programm “MEGREh-3D” dlya chislennogo modelirovaniya nelinejnykh protsessov deformirovaniya i razrusheniya ob'emnykh tel. Algoritmy i realizatsiya v OS ES // Sb. Pakety prikladnykh programm: Programmnoe obespechenie matematicheskogo modelirovaniya. M.: Nauka. 1992. S. 111-126.
10. Petushkov V. A. Modelirovanie nelinejnogo deformirovaniya i razrusheniya neodnorodnykh sred na osnove obobschennogo metoda integral'nykh predstavlenij // Matem. Modelirovanie, 2015, 27:1. 113–130.
11. Petushkov V.A., Potapov A.I. Chislennye resheniya trekhmernykh dinamicheskikh zadach teorii uprugosti // Dokl. Sed'mogo Vses. s'ezda po teoreticheskoj i prikladnoj mekhanike. M.: Izd-vo MGU, 1991. S. 286–287.
12. Petushkov V.A., Frolov K.V. Dinamika gidrouprugikh sistem pri impul'snom vozbuzhdenii, Dinamika konstruktsij gidroaehrouprugikh sistem. M.: Nauka, 2002. S. 162-202.
13. Kupradze V. D., Burchuladze T. V. Dinamicheskie zadachi teorii uprugosti i termouprugosti // Itogi nauki i tekhn. Seriya. Sovremennye probly matematiki. 7. M.: VINITI, 1975. S. 163–294.
14. Costabel M. Boundary integral operators on Lipschitz domains: elementary results// SIAM J. Math. Anal., 1988. V.19. № 3. P. 613-626.
15. Fata S. Nintcheu Treatment of domain integrals in boundary element methods// Appl. Numerical Mathematics. 2012. 62 (6). P. 720–735.
16. Strang G., Fix G. An Analysis of the Finite Element Method, 2nd edition. – Wellesley, Wellesley-Cambridge Press. MA. 2008. 400 p.
17. Hsiao G. C., Steinbach O., Wendland W.L. Domain decomposition methods via boundary integral equations// J. of Computational and Applied Mathematics. 2000. V. 125. P.521–537.
18. Petushkov V. A. Metod granichnykh integral'nykh uravnenij v modelirovanii nelinejnogo deformirovaniya i razrusheniya trekhmernykh neodnorodnykh sred// Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki. 2014. 2(35). 96–114.
19. Kramer S.L. Geotechnical Earthquake Engineering. Prentice-Hall, New Jersey, 1996. 672 p.