Modeling of turbulent fluid motion based on the boussinesq hypothesis. Overview

 
PIIS086858860001102-4-1
DOI10.31857/S086858860001102-4
Publication type Article
Status Published
Authors
Affiliation: Institute for Analytical Instrumentation of RAS
Address: Russian Federation, Saint-Petersburg
Affiliation: OOO BIOPRODUKT
Address: Russian Federation, Москва
Journal nameNauchnoe priborostroenie
EditionVolume 28 Issue 3
Pages101-108
Abstract

A mathematical simulation of a turbulent flow in a compressible and incompressible viscous fluid is consi-dered using the example of the simplest model of turbulent motion, obtained as a result of averaging the Navi-er—Stokes equations from Reynolds and Favre in conjunction with the Boussinesq hypothesis on the presence of turbulent viscosity. Algorithms for averaging the Navier—Stokes equations for a compressible and incom-pressible fluid are given. Appropriate equations for the averaged and pulsating field parameters for incompress-ible and compressible liquids are given. The results obtained are useful in the design of a new type of radiator, described in [1, 2], when operating in the turbulent regime of fluid motion.

Keywordsturbulent flow, Navier—Stokes equations system, Boussinesq hypothesis, compressible and incompressible viscous liquid, Reynolds averaging, Favre averaging, the averaged and pulsating flow
Received09.10.2018
Publication date10.10.2018
Number of characters650
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 1527

Readers community rating: votes 0

1. Sergeev V.A., Sharfarets B.P. [About one new method of electroacoustic transformation. A theory based on electro-kinetic phenomena. Part I. The hydrodynamic aspect]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2018, vol. 28, no. 2, pp. 25–35.

2. Sergeev V.A., Sharfarets B.P. [About one new method of electroacoustic transformation. A theory based on electro-kinetic phenomena. Part II. The acoustic aspect]. Nauch-noe Priborostroenie [Scientific Instrumentation], 2018, vol. 28, no. 2, pp. 36–44

3. Bradshaw P. An Introduction to Turbulence and its Mea-surement. Oxford, Pergamon Press., 1975. 218 p. (Russ. ed.: Bradshaw P. Vvedenie v turbulentnost' i ee izmerenie. Translate G.S. Glushko, Moscow, Mir Publ., 1974. 278 p.).

4. Zaslavskij G.M., Sagdeev R.Z. Vvedenie v nelinejnuyu fi-ziku: ot mayatnika do turbulentnosti i haosa [Introduction to nonlinear physics: from the pendulum to turbulence and chaos]. Moscow, Nauka Publ., 1988. 368 p. (In Russ.).

5. Frik P.G. Turbulentnost': modeli i podhody. Kurs lekcij. Ch. 1 [Turbulence: models and approaches. Course of lec-tures. Part 1], Perm, Perm National Research Polytechnic University, 1998. 108 p. (In Russ.).

6. Landau L.D., Lifshits E.M. Teoreticheskaya fizika. T. 6. Gidrodinamika [Theoretical physics. Vol. 6. Hydrody-namics], Moscow, Nauka Publ., 1988. 736 p. (In Russ.).

7. Wilcox C.D. Turbulence Modeling for CFD. DCW Indus-tries, Inc. La Canada, California, 1994. 460 p.

8. Monin A.S., Yaglom A.M. Statisticheskaya gidromekhanika. Mekhanika turbulentnosti. Ch. 1 [Statistical hydro-mechanics. Mechanics of turbulence. P. 1]. Moscow, Nauka Publ., 1965. 640 p. (In Russ.).

9. Monin A.S., Yaglom A.M. Statisticheskaya gidromekha-nika. Mekhanika turbulentnosti. Ch. 2 [Statistical hydro-mechanics. Mechanics of turbulence. P. 2]. Moscow, Nauka Publ., 1967. 720 p. (In Russ.).

10. Volkov K.N., Emel'yanov V.N. Modelirovanie krupnyh vihrej v raschetah turbulentnyh techenij [Modeling of large whirlwinds in calculations of turbulent flows]. Mos-cow, Fizmatlit Publ., 2008. 368 p. (In Russ.).

11. Velikanov M.A., Shvejkovskij N.T., eds. Problemy turbu-lentnosti [Turbulence problems]. Moscow, NKTP OF THE USSR Publ., 1936. 332 p. (In Russ.).

12. Belov I.A., Isaev S.A. Modelirovanie turbulentnyh tech-enij [Modeling of turbulent flows]. Saint-Petrsburg, Baltic State Technical University, 2001. 108 p. (In Russ.).

13. Uprazhneniya po kursu "Modelirovanie turbulentnosti" [Exercises at the rate "Modelling of Turbulence"]. Kurs lekcij "Modeli turbulentnosti" [Course of lectures of "Turbulence model"], Saint-Petersburg, St. Petersburg State Polytechnical University, Institute of applied ma-thematics and mechanics, department of hydroaerodynam-ics. (In Russ.).

14. Larsson J. Numerical simulation of turbulent flows for turbine blade heat transfer applications. Doctoral Thesis for the degree of Doctor of Philosophy. Department of Thermo and Fluid Dynamics Chalmers University of Technology, Göteborg, Sweden, 1998. 57 p.

Система Orphus

Loading...
Up