Hydride vapor phase epitaxy system for bulk gan layers deposition

 
PIIS086858860002808-0-1
DOI
Publication type Article
Status Published
Authors
Affiliation: Institute. A.F. Ioffe of the Russian Academy of Sciences
Address: Russian Federation
Affiliation: Institute. A.F. Ioffe of the Russian Academy of Sciences
Address: Russian Federation
Affiliation: JSC "Trinitri"
Address: Russian Federation
Affiliation: Institute. A.F. Ioffe of the Russian Academy of Sciences
Address: Russian Federation
Affiliation: Institute. A.F. Ioffe of the Russian Academy of Sciences
Address: Russian Federation
Affiliation: JSC "Trinitri"
Address: Russian Federation
Affiliation: JSC "Trinitri"
Address: Russian Federation
Affiliation: Institute. A.F. Ioffe of the Russian Academy of Sciences
Address: Russian Federation
Affiliation: Peter the Great St. Petersburg Polytechnic University
Address: Russian Federation
Affiliation: Institute. A.F. Ioffe of the Russian Academy of Sciences
Address: Russian Federation
Journal nameNauchnoe priborostroenie
EditionVolume 28 Issue 4
Pages20-22
Abstract

Hydride Vapor Phase Epitaxy is a promising method for the industrial production of GaN substrates. However, no HVPE reactors for the GaN and AlN bulk layer deposition are available on the market. We have developed a HVPE reactor for mass production of bulk GaN and AlN epitaxial layers with thickness up to 10 mm and diameter of 50 mm. A load-lock vacuum chamber and dry in-situ cleaning of growth chamber and substrate holder were implemented to improve the process reproducibility. High-capacity precursor sources have been developed to implement non-stop growth of layers with total thickness of 10 mm and higher. Freestanding GaN crystals with thickness of 5 mm and diameter of 50 mm have been grown with the reactor.

KeywordsHVPE, reactor, GaN, substrate, III-nitrides
Received02.12.2018
Publication date03.12.2018
Number of characters309
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной
1 123

views: 1671

Readers community rating: votes 0

1. Miyoshi T., Masui S., Okada T. et al. 510–515 nm In-GaN-based green laser diodes on C-plane GaN substrate. Applied Physics Express, 2009, vol. 2, no. 6, 062201. Doi: 10.1143/APEX.2.062201.

2. Cich M.J., Aldaz R.I., Chakraborty A. et al. Bulk GaN based violet light-emitting diodes with high efficiency at very high current density. Applied Physics Letters, 2012, vol. 101, no. 22, 223509. Doi: 10.1063/1.4769228.

3. Nie H., Diduck Q., Alvarez B. et al. 1.5-kV and 2.2- mOhm-cm2 Vertical GaN Transistors on Bulk-GaN Substrates. IEEE Electron Device Letters, 2014, vol. 35, no 9, pp. 939–941.

4. Fujikura H., Yoshida T., Shibata M., Otoki Y. Recent progress of high-quality GaN substrates by HVPE method. Proceedings of "Gallium Nitride Materials and Devices XII". International Society for Optics and Photonics, 2017, vol. 10104, 1010403. Doi: 10.1117/12.2257202.

5. Mori Y., Imade M., Maruyama M, Yoshimura M. Growth of GaN crystals by Na flux method. ECS Journal of Solid State Science and Technology, 2013, vol. 2, no. 8, pp. N3068–N3071. Doi: 0.1149/2.015308jss.

6. Kucharski R., Zając M., Doradziński R. et al. Non-polar and semi-polar ammonothermal GaN substrates. Semiconductor Science and Technology, 2012, vol. 27, no. 2, 024007. Doi: 10.1088/0268-1242/27/2/024007.

7. Bockowski M., Iwinska M., Amilusik M. et al. Challenges and future perspectives in HVPE-GaN growth on ammonothermal GaN seeds. Semiconductor Science and Technology, 2016, vol. 31, no. 9, 093002. Doi: 10.1088/0268-1242/31/9/093002.

Система Orphus

Loading...
Up