Discontinuous Galerkin method for simulation of ice flow impact on vertical cylinder offshore structure

 
PIIS023408790000612-7-1
DOI10.31857/S023408790000612-7
Publication type Article
Status Published
Authors
Affiliation: Keldysh Institute of Applied Mathematics RAS, Moscow Institute of Physics and Technology (State University)
Address: Russian Federation, Moscow
Affiliation: Moscow Institute of Physics and Technology (State University)
Address: Russian Federation, Moscow
Journal nameMatematicheskoe modelirovanie
EditionVolume 30 Number 9
Pages111-134
Abstract

This paper describes an approach to numerical simulation of ice field impact on cylinder vertical offshore structure, as well as detailed review of related complications. The paper presents information on ice rheology, a continuous mechanics model used, which makes it possible to achieve a balance between accuracy and amount of computational resources needed. The description of the numerical method, and also some features of the simulation and techniques, which allow to overcome a number of difficulties associated with the resource-intensive calculations, are given. Typical destruction patterns of the ice fields and pressure distributions on structures are discussed. Presented numerical results demonstrate applicability of ice model and implemented software to industrial problems of safety of oil and gas platforms on the Arctic shelf. 

Keywordsnumerical simulation, continuous mechanics, contact interaction, strength, destruction, sea ice, discontinuous Galerkin method
Received28.09.2018
Publication date04.10.2018
Number of characters825
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 1741

Readers community rating: votes 0

1. Nagruzki i vozdejstviya na gidrotekhnicheskie sooruzheniya (volnovye, ledovye i ot sudov). SNIP 2.06.04-82, 2012.

2. Pravila Rossijskogo morskogo registra sudokhodstva PBU/MSP, 2014.

3. P. Bergan, G. Cammaert, G. Skeie, V. Tharigopula. On the potential of computational methods and numerical simulation in ice mechanics // IOP Conference Series: Materials Science and Engineering, 2010, v.10, ID 012102.

4. J.P. Dempsey. Research trends in ice mechanics // Int. J. Solids Struct., 2000, v.37, p.131-153.

5. Z.P. Bažant. Fracture Analysis and Size Effects in Failure of Sea Ice, The Mechanics of Solids:History and Evolution; A Festschrift in Honor of Arnold Kerr, M.H. Santare and Michael J. Chajes, Eds., University of Delaware Press, Newark, Delaware, 2008, p.151-170.

6. M.A. Nessim, M.S. Cheung, I.J. Jordaan. Ice action on fixed offshore structures: a stateof-the-art review // Can. J. Civ. Eng., 1987, v.14, p.381-407.

7. W. Lu, S. Løset, R. Lubbad. Simulating ice-sloping structure interactions with the cohesive element method // Proc. of the ASME 31st International Conference on Ocean, Offshore and Arctic Engineering, 2012, p.1-10.

8. A.T. Bekker. Veroyatnostnye kharakteristiki ledovykh nagruzok na sooruzheniya kontinental'nogo shel'fa. – Vladivostok: Dal'nauka, 2005.

9. C. Petrich, H. Eicken. Growth, structure and properties of sea ice. Sea Ice–An Introduction to Its Physics, Biology, Chemistry and Geology // eds Thomas DN, Dieckmann GS (Blackwell Scientific, London), 2010, p 22-77.

10. E. Schulson, P. Duval. Creep and Fracture of Ice // Cambridge University Press, 2009.

11. V.N. Smirnov, V.U. Mironov. Issledovaniya prochnosti, morfometrii i dinamiki l'da v inzhenernykh zadachakh pri osvoenii shel'fa v zamerzayuschikh moryakh // Problemy Arktiki i Antarktiki, 2010, t.85, №2, s.5-15

12. L. Strub-Klein. Field Measurements and Analysis of the Morphological, Physical and Mechanical Properties of Level Ice and Sea Ice Ridges // Thesis for the degree of Philosophiae Doctor Trondheim, April 2012 Norwegian University of Science and Technology.

13. R.V. Gol'dshtejn, N.M. Osipenko. Nekotorye voprosy mekhaniki prochnosti morskogo l'da // Fizicheskaya mezomekhanika, 2014, t.17, №6, s.59-69.

14. A. Kovacs. Sea Ice: Part II. Estimating the Full-Scale Tensile, Flexural, and Compressive Strength of First-Year Ice // CRREL Report 96-11, Sept., 1996.

15. M. Gabrielsen et al. Comparison of physical and mechanical properties of coastal ice and level ice // Proc. of 19th IAHR International Symposium on Ice, Canada, 2008, p.1-10.

16. G. Timco, W. Weeks. A review of the engineering properties of sea ice // Cold Regions Science and Technology, 2010, 60, p.107-129.

17. A. Palmer, K. Croasdale. Arctic Offshore Engineering // World Scientific Publishing Company. Singapore, 2012.

18. T. Sain, R. Narasimhan. Constitutive modeling of ice in the high strain rate regime // Int. J. of Solids and Structures, 2011, №48, p.817-827.

19. M. Määttänen. Numerical Simulation of Ice-Induced Vibrations in Offshore Structures // Keynote Lecture, in Proc. 14th Nordic Seminar on Computational Mechanics, Lund University, p.13-28, Lund, Sweden, 2001.

20. R. Staroszczyk. Loads on an Off-Shore Structure due to an Ice floe Impact // Archives of Hydro-Engineering and Environmental Mechanics, 2007, v.54, №2, p.77-94.

21. K. Muggeridge, I. Jordaan. Microstructural change in ice: III. Observations from an iceberg impact zone // Journal of Glaciology, 1999, v.45, №151, p.449-455.

22. I. Jordaan. Mechanics of ice-structure interaction // Engineering Fracture Mechanics, 2001, v.68, p.1923-1960.

23. M. Lau. A Three-Dimensional Discrete Element Simulation of Ice Sheet Impacting a 60o conical Structure // Proceedings of the 16th International POAC conference. Ottawa, Ontario, Canada, 2001.

24. Hai Li, Yu Liu, Xiang Jun Bi et al. Numerical Simulation of Sea Ice Compressional Strength with Discrete Element Model // Advanced Materials Research, 2011, v.268-270. p.913-918.

25. J. Paavilainen, J. Tuhkuri, A. Polojarvi. Discrete Element Simulation of Ice Pile-Up Against an Inclined Structure // 18th IAHR International Symposium on Ice, 2006, p.177-184.

26. M. Lau, K.P. Lawrence, L. Rothenburg. Discrete element analysis of ice loads on ships and structures // Ships and Offshore Structures, 2011, v.6, №3, p.211-221.

27. T. Berglund. Ice fracture model for real-time ship simulator // Ph.D. thesis: Umeøa University, Faculty of Science and Technology, Department of Physics, 2012, 82.

28. Y. Yamauchi, K. Kamesaki, M. Hyodo Numerical Simulation on Ice-Structure Interaction during Earthquakes // Proceedings of the 20th international offshore and polar engineering conference, Beijing, 2010.

29. E. Kim. Experimental and numerical studies related to the coupled behavior of ice mass and steel structures during accidental collisions. Ph.D. thesis: Norwegian University of Science and Technology, 2014.

30. B. Sand. Nonlinear finite element simulations of ice forces on offshore structure. Doctoral thesis: Luleøa University of Technology, 2008.

31. I.J. Jordaan, J. Wells, J. Xiao et al. Ice crushing and cyclic loading in compression // Proceedings of the 19th IAHR International Symposium on Ice. Vancouver, British Columbia, Canada: 2008, p.1011-1023.

32. D. Hilding, J. Forsberg, A. Gurtner. Simulation of Loads from Drifting Ice Sheets on Offshore Structures // Proceedings of the 12th International LS-DYNA Users Conference, 2012, p.1-8.

33. K. Hyunwook. Simulation of compressive ’Cone-Shaped’ ice specimen experiments using LS-DYNA // Proceedings of the 12th International LS-DYNA Users Conference, 2014, p.1-9.

34. D. Hamid, B. Sand. Numerical Simulation of the Ice-Structure Interaction in LS-DYNA // 8th European LS-DYNA Users Conference, Strasbourg, 2011, ID 8504.

35. B. Sand, L. Fransson. Numerical simulation of level ice loads on Norstromsgrund lighthouse // Intern. Conf. on Cold Climate Technology, 26-28 May. Narvik, Norway: 2014.

36. Derradji-aouat, G.J. Earle. Ship-Structure Collisions: Development of a Numerical Model for Direct Impact Simulations, 2003, v.5, p.520-527.

37. R.E. Gagnon, J. Wang. Numerical simulations of a tanker collision with a bergy bit incorporating hydrodynamics, a validated ice model and damage to the vessel // Cold Regions Science and Technology, 2012, v.81, p.26-35.

38. J. Shunying, L. Shewen. Interaction between sea ice/iceberg and ship structures: A review // Advances in Polar Science, 2013, v.23, №4, p.187-195.

39. S. Kan, W. Tangborn. Calculation of the Size of the Iceberg Struck by the Oil tanker Overseas Ohio. 14th IAHR Symposium on Ice, 1997.

40. Gao Yan, Hu Zhiqiang, Wang Jin. Sensitivity Analysis for Iceberg Geometry Shape in Ship-Iceberg Collision in View of Different Material Models // Mathematical Problems in Engineering. 2014, v.2014, ID 414362, 11 p.

41. I.A. Stepanyuk, V.N. Smirnov. Metody izmerenij kharakteristik dinamiki morskogo l'da. – Sankt-Peterburg: Gidrometeoizdat, 2001.

42. Z. Liu, J. Amdahl, S. Løset. Plasticity based material modelling of ice and its application to ship-iceberg impacts // Cold Reg. Sci. Technol., 2011, v.65, p.326-334.

43. D. Hilding, J. Forsberg, A. Gürtner. Simulation of ice action loads on offshore structures // 8th European LS-DYNA Users Conference, Strasbourg, 2011.

44. Yan Gao, Zhiqiang Hu, J.W. Ringsberg, Jin Wang. An elastic-plastic ice material model for ship-iceberg collision simulations // Ocean Engineering, 2015, v.102, p.27-39.

45. V.D. Ivanov, V.I. Kondaurov, I.B. Petrov, A.S. Kholodov. Raschet dinamicheskogo deformirovaniya i razrusheniya uprugoplasticheskikh tel setochno-kharakteristicheskimi metodami // Matem. modelirovanie, 1990, t.2, №11, s.10-29.

46. V.A. Lobanov. Modelirovanie l'da v zadachakh s konechno-ehlementnoj postanovkoj // Differentsial'nye uravneniya i protsessy upravleniya, 2008, №4, s.19-29

47. A.N. Prokudin, V.I. Odinokov. Chislennoe issledovanie protsessa razrusheniya ledyanogo pokrova s uchyotom szhimaemosti i neodnorodnosti // Vychislitel'naya mekhanika sploshnykh sred, 2013, t.6, №1, s.110-118.

48. W.F. Weeks. On sea ice. – University of Alaska Press, 2010.

49. G.E. Frankenstein, R. Garner. Equation for determining the brine volume of sea ice from −0.5 to −22.9oC // J. Glaciol, 1967, v.6, №48, p.943-944.

50. Yu.N. Orlova. Kompleksnoe teoretiko-ehksperimental'noe issledovanie povedeniya l'da pri udarnykh i vzryvnykh nagruzkakh. – Tomsk: Tomskij gosuniversitet, 2014, kand. diss.

51. Abaqus Crushable foam plasticity models. http://www.egr.msu.edu/software/abaqus /Documentation/docs/v6.7/books/usb/default.htm?startat=pt05ch18s03abm32.html, 2015.

52. M. Torstein. Iceberg shape characterization for damage assessment of accidental impacts with ships and offshore structures, 2013.

53. R. Duddu, H. Waisman.A nonlocal continuum damage mechanics approach to simulation of creep fracture in ice sheets // Computational Mechanics, 2013, v.51, №6, p.961-974.

54. M. Dumbser, M. Kaser. An Arbitrary High Order Discontinuous Galerkin Method for Elastic Waves on Unstructured Meshes II: The Three-Dimensional Isotropic Case // Geophysical Journal International, 2007, v.171, №3, p.1324.

55. R.L. LeVeque. Finite volume methods for hyperbolic problems. – Cambridge: Cambridge University Press, 2002.

56. E.F. Toro. Riemann solvers and numerical methods for fluid dynamics, 2nd ed., – Springer, 1999.

57. L.C. Wilcox, G. Stadler, C. Burstedde, O. Ghattas. A high-order discontinuous Galerkin method for wave propagation through coupled elastic-acoustic media // Journal of Computational Physics, 2010, №229, p.9373-9396.

58. A.G. Kulikovskij, N.V. Pogorelov, A.Yu. Semenov. Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem uravnenij. – M.: FIZMATLIT, 2001.

59. M. Kaser, M. Dumbser. An Arbitrary High Order Discontinuous Galerkin Method for Elastic Waves on Unstructured Meshes II: The Three-Dimensional Isotropic Case // Geophysical Journal International, 2007, v.171, №3, p.1324.

60. C. Pelties et al. Three-dimensional dynamic rupture simulation with a high-order discontinuous Galerkin method on unstructured tetrahedral meshes // Journal of Geophysical Research: Solid Earth, 2012, v.117, №2, p.1-15.

61. V.A. Miryakha, A.V. Sannikov, I.B. Petrov. Chislennoe modelirovanie dinamicheskikh protsessov v tverdykh deformiruemykh telakh razryvnym metodom Galerkina // Matematicheskoe modelirovanie, 2015, t. 27, №3, s.96-108.

62. V.A. Biryukov, V.A. Miryakha, I.B. Petrov. Analiz zavisimosti global'noj nagruzki ot mekhanicheskikh parametrov l'da pri vzaimodejstvii ledyanogo polya s konstruktsiej putem chislennogo modelirovaniya // DAN, 2017, t.474, №6, s.697-694.

63. V.A. Biryukov, V.A. Miryakha, I.B. Petrov, N.I. Khokhlov. Modelirovanie rasprostraneniya uprugikh voln v geologicheskoj srede: sravnenie rezul'tatov trekh chislennykh metodov // Zh. vych. mat. i mat. fiziki, 2016, t.56, №6, s.1104-1114.

64. Quasi-Static Analyses, Lecture 5, e-library ABAQUS http://imechanica.org/files/l5-quasistatic.pdf.

65. G. Van der Bergen. Efficient collision detection of complex deformable models using AABB trees // Journal of Graphics Tools, 1997, v.4, №2, pp. 1-13.

66. A.V. Sannikov, B.A. Miryakha, I.B. Petrov. Chislennoe modelirovanie ehksperimentov po issledovaniyu prochnosti l'da // Trudy tret'ej mezhdunarodnoj nauchnoj konferentsii “Polyarnaya mekhanika”, 27-30 sentyabrya 2016g., g.Vladivostok, s.141-150.

Система Orphus

Loading...
Up