Multirate solver with speed and gap error control for vehicular traffic simulation

 
PIIS023408790000610-5-1
DOI10.31857/S023408790000610-5
Publication type Article
Status Published
Authors
Affiliation: Peter the Great St. Petersburg Polytechnic University
Address: Russian Federation, St. Petersburg
Affiliation: Peter the Great St. Petersburg Polytechnic University
Address: Russian Federation, St. Petersburg
Journal nameMatematicheskoe modelirovanie
EditionVolume 30 Number 9
Pages87-99
Abstract

Nowadays computer simulation of vehicular traffic on the real road network can be used as a tool for solving actual and practical problems. The microscopic approach and large number of vehicles to simulate (tens of thousands) lead to tremendous systems of ordinary differential systems. The vehicles dynamics can vary sufficiently from vehicle to vehicle. As a result the corresponding differential equations system has different time scales, which are localized over the components. In other words, the temporal variations have different time scales for different components, which are in this case vehicles speeds and distances between them (gaps). In this paper we suggest the numerical integration scheme, which exploits an individual time step for each component (microstep) within one macrostep. The microstep value of a particular system component is determined by the local temporal variation of the solution, instead of using a single step size for the whole system. This time stepping strategy is obtained both for vehicles speeds and gaps. What is more, the local error estimation for the gaps is derived one order higher than for the speeds, because drivers assess first of all the distance, not the speed. Comparison with the corresponding single-rate scheme demonstrates substantial gains in CPU times.

Keywordsnumerical integration, multirate solvers, ordinary differential equations, microscopic vehicular traffic models
Received28.09.2018
Publication date04.10.2018
Number of characters1362
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 1519

Readers community rating: votes 0

1. M. Treiber and A. Kesting. Traffic Flow Dynamics. – Berlin: Springer, 2013, 503 p.

2. A.V. Gasnikov. Vvedenie v matematicheskoe modelirovanie transportnykh potokov. – M.: MFTI, 2010, 362 s.

3. G. Orosz, R.E. Wilson and B. Krauskopf. Global bifurcation investigation of an optimal velocity traffic model with driver reaction time // Phys. Rev.E, 2004, v.70, p.026207.

4. A. Tordeux, S. Lassarre and M. Roussignol. An adaptive time gap car-following model // Transportation Research Part B, 2010, v.44, p.1115-1131.

5. C. Gear and D. Wells. Multirate linear multistep methods // BIT, 1984, v.24, №4, p.484-502.

6. M. Gunther, A. Kværnø, and P. Rentrop. Multirate partitioned Runge-Kutta methods // BIT, 2001, v.41, p.504-514.

7. V. Savcenco, W. Hundsdorfer, and J.G. Verwer. A multirate time stepping strategy for stiff ordinary differential equations // BIT, 2007, v.47, p.137-155.

8. A.B. Korchak, A.V. Evdokimov. Metod parallel'nogo rascheta rasscheplennykh sistem differentsial'nykh uravnenij s kratnymi shagami // Trudy MFTI, 2010, t.2, №2, c.77-85.

9. V.V. Kurts, I.E. Anufriev. Bystryj algoritm s kratnymi shagami dlya zadachi modelirovaniya transportnykh potokov // Matemat. modelir., 2016, t.28, №5, c.124-134.

10. H.J. Payne. Models of freeway traffic and control // Simulation Council Proc. 28, Mathematical Models of Public Systems / ed. by G.A. Bekey, 1971, v.1, p.51-61.

11. B.S. Kerner and P. Konhäuser. Cluster effect in initially homogeneous traffic flow // Phys. Rev. E., 1993, v.48, p.2335-2338.

12. A.A. Chechina, N.G. Churbanova and M.A. Trapeznikova. Two-dimensional hydrodynamic model for traffic flow simulation using parallel computer systems // Proceedings of the international conference of the numerical analysis and applied mathematics 2014. – AIP Conference Proceedings, 2015, v.1648, p.530007.

13. R. Jiang, Q. Wu and Z. Zhu. Full velocity difference model for a car-following theory // Physical Review E, 2001, v.64, №1, p.017101.1–017101.4.

14. M. Treiber, A. Kesting and D. Helbing. Delays, inaccuracies and anticipation in microscopic traffic models // Physica A, 2006, v.360, №1, p.71–88.

15. I. Lubashevsky, P. Wagner and R. Manhke. A bounded rational driver model // European Physical Journal B, 2003, v.32, p.243-247.

16. A. Kværnø. Stability of multirate Runge–Kutta schemes // Int. J. Differ. Equ. Appl., 2000, v.1(A), p.97-105.

17. S. Skelboe. Stability properties of backward differentiation multirate formulas // Appl. Numer. Math., 1989, v.5, p.151–160.

18. Verhoeven et al. Stability analysis of the BDF slowest first multirate methods // CASAReport, 0704, p.895-923.

19. V. Kurtc and I. Anufriev. Local stability conditions and calibrating procedure for new carfollowing models used in driving simulators // In Proceedings of the 10th Conference on Traffic and Granular Flow’13, 2015, p.453-461.

Система Orphus

Loading...
Up