Реализация двухкубитного квантового вентиля C-NOT в системе из двух двойных квантовых точек, микрорезонатора и лазера

 
Код статьиS054412690001730-0-1
DOI10.31857/S054412690001730-0
Тип публикации Статья
Статус публикации Опубликовано
Авторы
Аффилиация:
Физико-технологический институт Российской АН
Московский физико-технический институт (государственный университет)
Адрес: 117218, Россия, Москва, Нахимовский проспект, 36/1
Аффилиация:
Физико-технологический институт Российской АН
Московский физико-технический институт (государственный университет)
Адрес: 117218, Россия, Москва, Нахимовский проспект, 36/1
Название журналаМикроэлектроника
ВыпускТом 47 5
Страницы3-13
АннотацияВ работе исследуется возможность выполнения двухкубитной операции «контролируемое-НЕ» в структуре на основе двух полупроводниковых двойных квантовых точек, помещенных в высокодобротный оптический микрорезонатор и управляемых резонансным лазерным полем. Рассматривается влияние ряда релаксационных процессов на динамику двухэлектронной системы. Также найдены значения скоростей диссипаций, для которых возможно применение алгоритмов квантовой коррекции ошибок. За счет наличия дополнительного канала возбуждения – лазерного импульса, удается уменьшить влияние неидеальности резонатора на эволюцию состояний. Произведен подбор оптимальных величин коэффициентов связи электрона в квантовых точках с управляющими полями, при которых переключение контролируемого кубита осуществляется с наибольшей вероятностью, а время реализации вентиля составляет порядка нескольких сотен пикосекунд.  
Ключевые слова
Дата публикации28.10.2018
Кол-во символов901
Цитировать   Скачать pdf Для скачивания PDF необходимо авторизоваться
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной.

всего просмотров: 1070

Оценка читателей: голосов 0

1. Freeman R. et al. Optical molecular sensing with semiconductor quantum dots (QDs) // Chem. soc. Rev. 2012. V. 41. P. 4067–4085.

2. Walling M. A. et al. Quantum Dots for Live Cell and In Vivo Imaging // Int. J. mol. sci. 2009. V. 10 (2). P. 441–491.

3. Цуканов А.В. и Чекмачев В. Г. Сенсор электрического поля на основе двойной квантовой точки в микрорезонаторе. // Физика и техника полупроводников. 2017. Т. 51. С. 1249.

4. Цуканов А.В. и Катеев И.Ю. квантовые вычисления на квантовых точках в полупроводниковых микрорезонаторах. Часть I // микроэлектроника. 2014. Т. 43. № 5. С. 323.

5. Цуканов А. В. и Катеев И. Ю. квантовые вычисления на квантовых точках в полупроводниковых микрорезонаторах. Часть II // микроэлектроника. 2014. Т. 43. № 6. С. 403.

6. Цуканов А.В. и Катеев И.Ю. квантовые вычисления на квантовых точках в полупроводниковых микрорезонаторах. Часть III // микроэлектроника. 2015. Т. 44. № 2. С. 79.

7. Цуканов А.В. и Катеев И.Ю. квантовые операции на зарядовых кубитах с электростатическим управлением в полупроводниковых резонаторах // микроэлектроника. 2013. Т. 42. № 4. С. 246.

8. Barenco A. et al. Elementary gates for quantum computation // Phys. Rev. A. 1995. V. 52. P. 3457.

9. Hyochul K. et al. A quantum logic gate between a solidstate quantum bit and a photon // Nature Photonics. 2013. V. 7. P. 373.

10. Hai-Ou Li et al. Conditional rotation of two strongly coupled semiconductor charge qubits // Nature Communications. 2015. V. 6. № 7681.

11. Pashkin Yu. A. et al. Josephson charge qubits: a brief review // Quantum Inf Process. 2009. V. 8. P. 55–80.

12. Dmitriev A. Yu. et al. Quantum wave mixing and visualisation of coherent and superposed photonic states in a waveguide // Nature Communications. 2017. V. 8. № 1352. Jens Koch et al. Charge-insensitive qubit design derived from the Cooper pair box // Phys. Rev. A. 2007. V. 76. P. 042319.

13. Schreier J. A. et al. suppressing charge noise decoherence in superconducting charge qubits // Phys. Rev. B. 2008. V. 77. P. 180502.

14. Gambetta J. M. et al. Building logical qubits in a superconducting quantum computing system // npj Quantum Information. 2017. V. 3. № 2.

15. Pednault E. et al. Breaking the 49-qubit barrier in the simulation of quantum circuits // arXiv:1710.05867. 2017.

16. Harty T. P. et al. high-Fidelity preparation, gates, memory, and readout of a trapped-ion quantum bit // Phys. Rev. Lett. 2014. V. 113. P. 220501.

17. Nigg D. et al. Quantum computations on a topologically encoded qubit // science. 2014. V. 345. P. 302.

18. Ospelkaus C. et al. microwave quantum logic gates for trapped ions // Nature. 2011. V. 476. P. 181–184.

19. Norbert M. L. et al. Experimental comparison of two quantum computing architectures // Proc. Natl. Acad. sci. UsA. 2017. V. 114. No. 13. PP. 3305–3310.

20. Bernien H. et al. Probing many-body dynamics on a 51-atom quantum simulator // arXiv: 1707.04344. 2017.

21. Shulman M. D. et al. Demonstration of entanglement of electrostatically coupled singlet-triplet qubits // science. 2012. V. 336. P. 202.

22. Zwanenburg F. A. et al. silicon quantum electronics // Rev. mod. Phys. 2013. V. 85. P. 961.

23. Gumann P. et al. Inductive measurement of optically hyperpolarized phosphorous donor nuclei in an isotopically enriched silicon–28 crystal // Phys. Rev. Lett. 2014. V. 113. P. 267604. Sigillito A. J. et al. All-electric control of donor nuclear spin qubits in silicon // Nature Nanotechnology. 2017. V. 12. P. 958–962.

24. Martin-Lopez E. et al. Experimental realization of shor’s quantum factoring algorithm using qubit recycling // Nature Photonics. 2012. V. 6. P. 773–776.

25. Srinivasanet K. et al. Linear and nonlinear optical spectroscopy of a strongly coupled microdisk–quantum dot system // Nature. 2007. V. 450. P. 862. Asano T. et al. Photonic crystal nanocavity with a Q factor exceeding eleven million // Opt. Express. 2017. V. 25. P. 1769–1777.

26. Schneider C. et al. Quantum dot micropillar cavities with quality factors exceeding 250,000 // Appl. Phys. B. 2016. V. 122:19.

27. Tsukanov A. et al. Charge qubit inversion in combined laser and cavity field // CEUR Workshop Proceedings. 2015. V. 1482. P. 748–753. 28. Цуканов А. В., Чекмачев В. Г. моделирование спектроскопического отклика и динамики электрона в двойной квантовой точке // микроэлектроника. 2016. Т. 45. № 1. С. 1.

28. E Jaynes.T., Cummings F. W. Comparison of quantum and semiclassical radiation theories with application to the beam maser // Proc. IEEE. 1963. V. 51. P. 89–109.

29. Leggett A. J. et al. Dynamics of the dissipative two-state system // Rev. mod. Phys. 1987. V. 59. P. 1

30. Walls D. F., Milburn G. J. Quantum Optics. springer, 2008. Zibik E. A., Grange T., Carpenter B. A., Porter N. E., Ferreira R., Bastard G., Stehr D., Winnerl S., Helm M.

31. Liu H. Y., Skolnick M. S., Wilson L. R. Long lifetimes of quantum-dot intersublevel transitions in the terahertz range // Nature mat. 2009. V. 8. P. 803.

32. Roy-Choudhury K., Hughes S. spontaneous emission from a quantum dot in a structured photonic reservoir: phonon-mediated breakdown of Fermi’s golden rule // Optica. 2015. V. 2. P. 434–437.

33. Gustin C., Hughes S. Influence of electron-phonon scattering for an on-demand quantum dot singlephoton source using cavity-assisted adiabatic passage // Phys. Rev. B. 2017. V. 96. P. 085305.

34. Cassabois G. and Ferreira R. Dephasing processes in a single semiconductor quantum dot // Comptes Rendus Physique. 2008. V. 9. P. 830–839.

35. Liu J., Kilina S. V., Tretiak S., Prezhdo O. V. Ligands slow down pure-dephasing in semiconductor quantum dots // ACs Nano. 2015. V. 9. P. 9106.

36. Knap, M., Arrigoni, E., Linden, W., Cole, J. H. Emission characteristics of laser-driven dissipative coupledcavity systems // Phys. Rev. B. 2011. V. 83. № 2. P. 023821.

37. Головинский П. А. Влияние эффекта Штарка на резонансный перенос возбуждения между квантовыми точками // Физика и техника полупроводников. 2014. Т. 48. С. 781.

38. Alizadeh A., et al. Epitaxial growth of 20 nm InAs and gaAs quantum dots on gaAs through block copolymer templated siO2 masks // Journal of Applied Physics. 2009. V. 105. PP. 054305.

39. Ganichev S. D., Yassievich I. N., Prettl W. Tunnelling ionization of deep centres in high-frequency electric fields // J. Phys.: Condens. matter. 2002. V. 14. P. R1263.

40. Tsukanov A. V. Resonant optical electron transfer in one-dimensional multiwell structures // J. Phys.: Condens. matter. 2008. V. 20. P. 315204.

41. Devitt S. J., Munro W. J., Kae Nemoto. Quantum error correction for beginners // Reports on Progress in Physics. 2013. V. 76. P. 076001.

42. Fowler A. G., Mariantoni M., Martinis J. M., Cleland A. N. surface codes: Towards practical largescale quantum computation // Phys. Rev. A. 2012. V. 86. P. 032324.

Система Orphus

Загрузка...
Вверх