Параметры плазмы и кинетика активных частиц в смесях CF4 (CHF3)+ Ar переменного начального состава

 
Код статьиS054412690002767-0-1
DOI10.31857/S054412690002767-0
Тип публикации Статья
Статус публикации Опубликовано
Авторы
Аффилиация: Федеральное государственное бюджетное образовательное учреждение высшего образования “Ивановский государственный химико-технологический университет”
Адрес: Иваново, 153000, Шереметевский пр., д. 7
Аффилиация: Korea University
Адрес: Корея
Аффилиация: Федеральное государственное бюджетное образовательное учреждение высшего образования “Ивановский государственный химико-технологический университет”
Адрес: Российская Федерация
Название журналаМикроэлектроника
ВыпускТом 47 6
Страницы414-423
Аннотация

Проведено сравнительное исследование электрофизических параметров плазмы и кинетики активных частиц в смесях CF4 + Ar и CHF3+ Ar в условиях индукционного ВЧ (13.56 МГц) разряда. Показано, что система CHF3+ Ar в диапазоне 0–75% Ar отличается систематически более низкими значениями концентраций и плотностей потоков атомов фтора, но более высокими – фторуглеродных радикалов и положительных ионов. Предложен набор формальных параметров в виде отношений плотностей потоков частиц для описания процессов формирования и деструкции фторуглеродной полимерной пленки. Подтверждено, что преимущество системы CHF3 + Ar по селективности травления SiO2/Si обусловлено ее более высокой полимеризационной способностью.

Ключевые слова
Получено08.12.2018
Дата публикации08.12.2018
Цитировать   Скачать pdf Для скачивания PDF необходимо авторизоваться
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной.

всего просмотров: 1560

Оценка читателей: голосов 0

1. Wolf S., Tauber R. N.. Silicon Processing for the VLSI Era. V. 1. Process Technology. Lattice Press, New York, 2000. 416 p.

2. Rossnagel S.M., Cuomo J. J., Westwood W. D. (Eds.). Handbook of plasma processing technology. NoyesPublications, ParkRidge, 1990. 338 p.

3. Roosmalen A.J., Baggerman J.A.G., Brader S.J.H. Dry etching for VLSI. Plenum Press, New-York, 1991. 490 р.

4. Kimura T., Ohe K. Model and probe measurements of inductively coupled CF4 discharges // J. Appl. Phys. 2002. V. 92. P. 1780Ц1787.

5. Kimura T., Ohe K.. Probe measurements and global model of inductively coupled Ar/CF4 discharges // Plasma Sources Sci. Technol. 1999. V. 8. P. 553Ц560.

6. Standaert T.E.F. M., Hedlund C., Joseph E. A., Oehrlein G. S. Role of fluorocarbon film formation in the etching of silicon, silicon dioxide, silicon nitride, and amorphous hydrogenated silicon carbide // J. Vac. Sci. Technol. A. 2004. V. 22. P. 53Ц60.

7. Lee H.K., Chung K. S., Yu J. S. Selective Etching of Thick Si3N4, SiO2 and Si by Using CF4/O2 and C2F6 Gases with or without O2 or Ar Addition // J. Korean Phys. Soc. 54 (2009) 1816Ц1824.

8. Lieberman M.A., Lichtenberg A. J.. Principles of plasma discharges and materials processing. John Wiley & Sons Inc., New York, 1994. 757 p.

9. Yeom G.Y., Kushner M. J.. Si/SiO2 etch properties using CF4 and CHF3 in radio frequency cylindrical magnetron discharges // Appl. Phys. Lett. 1990. V. 56. P. 857Ц859.

10. Rossnagel S.M., Cuomo J. J., Westwood W. D. (Eds.). Handbook of plasma processing technology. Noyes Publications, Park Ridge, 1990. 338 p.

11. Gaboriau F., Cartry G., Peignon M-C., Cardinaud Ch. Selective and deep plasma etching of SiO2: Comparison between different fluorocarbon gases (CF4 , C2F6, CHF3) mixed with CH4 or H2 and influence of the residence time // J. Vac. Sci. Technol. B. 2002. V. 20. P. 1514Ц1521.

12. Ho P., Johannes J. E., Buss R. J. Modeling the plasma chemistry of C2F6 and CHF3 etching of silicon dioxide, with comparisons to etch rate and diagnostic data // J. Vac. Sci. Technol. A. 2001. V. 19. P. 2344Ц2367.

13. Bose D., Rao M. V. V. S., Govindan T. R., Meyyappan M. Uncertainty and sensitivity analysis of gas-phase chemistry in a CHF3 plasma // Plasma Sources Sci. Technol. 2003. V. 12. P. 225Ц234.

14. Proshina O., Rakhimova T. V., Zotovich A., Lopaev D. V., Zyryanov S. M., Rakhimov A. T. Multifold study of volume plasma chemistry in Ar/CF4 and Ar/CHF3 CCP discharges // Plasma Sources Sci. Technol. 2017, at press: https://doi.org/10.1088/1361-6595/aa72c9.

15. Chun I., Efremov A., Yeom G. Y., Kwon K.-H. A comparative study of CF4/O2/Ar and C4F8/O2/Ar plasmas for dry etching applications // Thin Solid Films. 2015. V. 579. P. 136Ц148.

16. Son J., Efremov A., Yun S. J., Yeom G. Y., Kwon K.-H. Etching characteristics and mechanism of SiNx films for Nano-Devices in CH2F2/O2/Ar inductively coupled plasma:Effect of O2 mixing ratio // J. Nanosci. Nanotech. 2014. V. 14. P. 9534Ц9540.

17. Johnson E.O., Malter L. A floating double probe method for measurements in gas discharges // Phys. Rev. 1950. V. 80. P. 58Ц70.

18. Sugavara M. Plasma etching: Fundamentals and applications. Oxford University Press, New York, 1998. 469 p.

19. Kwon K.-H., Efremov A., Kim M., Min N. K., Jeong J., Kim K. A model-based analysis of plasma parameters and composition in HBr/X (X=Ar, He, N2) inductively coupled plasmas // J. Electrochem. Soc. 2010. V. 157. P. H574ЦH579.

20. Efremov A., Min N. K., Choi B. G., Baek K. H., Kwon K.-H. Model-based analysis of plasma parameters and active species kinetics in Cl2/X (X=Ar, He, N2) inductively coupled plasmas // J. Electrochem. Soc. 2008. V. 155. P. D777ЦD782.

21. Kokkoris G., Goodyear A., Cooke M., Gogolides E. A global model for C4F8 plasmas coupling gas phase and wall surface reaction kinetics //J. Phys. D: Appl. Phys. 2008. V. 41. P. 195211.

22. NIST Chemical Kinetics Database. https://kinetics.nist.gov/kinetics/welcome.jsp

23. Efremov A.M., Kim D.-P., Kim C.-I. Effect of gas mixing ratio on gas-phase composition and etch rate in an inductively coupled CF4/Ar plasma // Vacuum 2004. V. 75. P. 133Ц142.

24. Lele C., Liang Z., Linda X., Dongxia L., Hui C., Tod P. Role of CF2 in the etching of SiO2, Si3N4 and Si in fluorocarbon plasma // J. Semicond. 2009. V. 30. P. 033005-1.

25. Kay E., Coburn J., Dilks A. Plasma chemistry of fluorocarbons as related to plasma etching and plasma polymerization. In: Veprek S., Venugopalan M. (eds) Plasma Chemistry III. Topics in Current Chemistry. V. 94. Springer, Berlin, Heidelberg, 1980.

26. Kay E., Dilks A. Plasma polymerization of fluorocarbons in rfcapacitively coupled diode system // J. Vac. Sci. Tech. 1981. V. 18. P. 1Ц11.

27. Stoffels W. W., Stoffels E., Tachibana K. Polymerization of fluorocarbons in reactive ion etching plasmas // J. Vac. Sci. Tech. A. 1998. V. 16. P. 87Ц95.

28. Gray D.C., Tepermeister I., Sawin H. H. Phenomenological modeling of ion enhanced surface kinetics in fluorine-based plasma etching // J. Vac. Sci. Technol. B. 1993. V. 11. P. 1243Ц1257.

29. Efremov A.M., Kim D. P., Kim C.-I. Simple model for ion-assisted etching using Cl2/Ar inductively coupled plasma: effect of gas mixing ratio // IEEE Trans. Plasma Sci. 2004. V. 32. P. 1344Ц1351.

30. Jansen H., Gardeniers H., de Boer M., Elwenspoek M., Fluitman J. A survey on the reactive ion etchingof silicon in microtechnology // J. Micromech. Microeng. 1996. V. 6. P. 14Ц28.

Система Orphus

Загрузка...
Вверх