Energy efficiency indicator based on entropy production evaluation

 
PIIS000233100003522-8-1
DOI10.31857/S000233100003522-8
Publication type Article
Status Published
Authors
Affiliation: Federal State Budgetary Educational Institution of Higher Education “Transbaikal State University”
Address: Russian Federation
Journal nameIzvestiia Rossiiskoi akademii nauk. Energetika
EditionIssue 6
Pages88-102
Abstract

The article is about one of the estimation methods of thermal objects energy efficiency. The method is based on entropy production ratio. The basic concepts of energy efficiency evaluation are briefly described. Entropy production ratio of heating building is obtained. This ratio called entropy efficiency can be used for heating building thermal efficiency. It is proved that thermal inertia of building depends on its entropy efficiency. The method is adapted for direct and reversed thermal cycles. The research results in universal indicator applying for any thermal systems, those not performing work including.

Keywordsentropy, negentropy, entropy production, entropy efficiency, heating building, thermal inertia, thermal cycles
Received16.01.2019
Publication date16.01.2019
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 1124

Readers community rating: votes 0

1. Gokhshtejn D.P. Sovremennye metody termodinamicheskogo analiza ehnergeticheskikh ustanovok, M., “Ehnergiya”, 1969. 368 s.

2. Sheng, Shiqi, Z.C. Tu. Universality of energy conversion efficiency for optimal tight-coupling heat engines and refrigerators // J. of Physics. A: Mathematical and Theoretical. 2013. V. 46. P. 40. http://dx.doi.org/10.1088/1751–8113/46/40/402001

3. Thiel, Gregory P., et al. Thermodynamic equipartition for increased second law efficiency // Appl. Energy. 2014. V.118. Pp.292–299. http://dx.doi.org/10.1016/j.apenergy.2013.12.033

4. Kalema T., Johannesson G., Pylsy P., Hagengran P. Accuracy of Energy Analysis of Buildings: A Comparison of a Monthly Energy Balance Method and Simulation Methods in Calculating the Energy Consumption and the Effect of Thermal Mass // J. of Building Physics. 2008. V. 32. № 2. P. 101–130. http://dx.doi.org/10.1177/1744259108093920

5. Stepanov V., Starikova N., Stepanova T. Indices for estimation of energy conservation in space heating // Energy and Buildings. 2000. Vol.31. № 3. Pp.189–193. http://dx.doi.org/10.1016/S0378–7788 (99)00013–4

6. Gholamreza H., Qaemi M. Energy performance of buildings: The evaluation of design and construction measures concerning building energy efficiency in Iran // Energy and Buildings. 2014. Vol.75 Pp.456–464. http://dx.doi.org/10.1016/j.enbuild.2014.02.035

7. Tronchin L., Fabbri K. Energy performance building evaluation in Mediterranean countries: comparison between software simulations and operating rating simulation // Energy and Buildings. 2008. Vol.4 № 7 Pp.1176–1187. http://dx.doi.org/10.1016/j.enbuild.2007.10.012

8. Patterson M.G. What is energy efficiency?: Concepts, Indicators and Methodological Issues // Energy policy. 1996. Vol.24 № 5. Pp.377–390. http://dx.doi.org/10.1016/0301–4215 (96)00017–1

9. Dincer I., Cengel Y.A. Energy, entropy and exergy concepts and their roles in thermal engineering // Entropy. 2001. Vol.3. № 3. Pp.116–149. http://dx.doi.org/10.3390/e3030116

10. Martyushev L.M. Entropy and Entropy Production: Old Misconceptions and New Breakthroughs // Entropy. 2013. Vol.15. № 4. Pp.1152–1170. http://dx.doi.org/10.3390/e15041152

11. Brodyanskij V.M., Fratsher V., Mikhalek K. Ehksergeticheskij metod i ego prilozheniya. M.: Ehnergoatomizdat, 1988. 288 s.

12. Romero J.C., Linares P. Exergy as a global energy sustainability indicator. A review of the state of the art // Renewable and Sustainable Energy Reviews. 2014. Vol.33 Pp.427–442. http://dx.doi.org/10.1016/j.rser.2014.02.012

13. Yantovskij E.I. Potoki ehnergii i ehksergii. M.: Nauka, 1988. 144 s., il.

14. Valero A. Exergy accounting: capabilities and drawbacks // Energy. 2006. Vol.31. № 1. Pp.164–180. http://dx.doi.org/10.1016/j.energy.2004.04.054

15. Herena T., Angelotti A., Schmidt D. Exergy analysis of renewable energy-based climatisation systems for buildings: a critical view // Energy and Buildings. 2009. Vol.41. № 3. Pp.248–271. http://dx.doi.org/10.1016/j.enbuild.2008.10.006

16. Prigozhin I., Kondepudi D. Sovremennaya termodinamika. M.: Mir, 2002. T. 461.

17. Martyushev L.M. Seleznev. V.D. Printsip maksimal'nosti proizvodstva ehntropii v fizike i smezhnykh oblastyakh. Ekaterinburg: GOU VPO UGTU-UPI, 2006. 83 s.

18. Bejan A. Entropy generation minimization: the method of thermodynamic optimization of finite-size systems and finite-time processes. CRC press, 1995.

19. Kaganovich B.M., Voropaj N.I., Stennikov V.A. Problema nezamknutosti termodinamiki v sistemnom ehnergeticheskom analize // Izv. RAN. Ehnergetika. 2016. № 5. S. 57–66.

20. Shredinger Eh. Chto takoe zhizn'? Fizicheskij aspekt zhivoj kletki. Moskva-Izhevsk: NITs “Regulyarnaya i khaoticheskaya dinamika”. 2002. 92 s.

21. Poplavskij R.P. Termodinamika informatsionnykh protsessov. M.: Nauka. Gl. red. fiz. lit. 1981. 256 s.

22. SP 60.13330.2012. Svod pravil. Otoplenie, ventilyatsiya i konditsionirovanie vozdukha. Aktualizirovannaya redaktsiya SNiP 41–01–2003.

23. Trebunskikh S.A. Batukhtin A.G. Ehntropijnaya ehffektivnost' teplopotreblyayuschikh ob'ektov // Nauchno-tekhnicheskie vedomosti SPbGPU. 2011. № 2. S. 91–99.

24. Sokolov E.Ya. Teplofikatsiya i teplovye seti: Uchebnik dlya vuzov. M.: Izd-vo MEhI. 2001. 472 s.

25. Hasan A.A., Goswami D.Y., Vijayaraghavan S. First and second law analysis of a new power and refrigeration thermodynamic cycle using a solar heat source // Solar Energy. 2002. Vol.73. № 5. Pp.385–393.

Система Orphus

Loading...
Up