Symmetrization of three-phase circuit as the multi-objective optimization problem

 
PIIS000233100003517-2-1
DOI10.31857/S000233100003517-2
Publication type Article
Status Published
Authors
Affiliation: Institute of Energy and Transport Systems, Peter the Great St. Petersburg State Polytechnic University
Address: Russian Federation
Affiliation: Institute of Energy and Transport Systems, Peter the Great St. Petersburg State Polytechnic University
Address: Russian Federation
Journal nameIzvestiia Rossiiskoi akademii nauk. Energetika
EditionIssue 6
Pages24-37
Abstract

The unbalanced loads cause the negative and zero sequences, the temporary variation of active power in the neutral wire that appears in three-phase systems. These components there are usual cause of the increasing energy losses and decreasing the quality of energy. This paper is presented a method, which focuses on the reducing the number of one-phase devices for compensation asymmetry, based on a novel approach to the optimization of the unbalanced operating mode in three-phase power systems. The components, which appear in unbalanced systems, are considered as goal-functions for the multi-objective optimization. For multi-objective optimization, we used a genetic algorithm with non-dominated sorting (NSGA-II). A new approach is proposed for estimating target functions in three-phase systems. This approach allows us to significantly reduce the necessary amount of calculations and proceed to the estimation of objective functions in real time.

Keywordsfractional-polynomial function; regulable parameter; three-phase systems; symmetrization; negative sequence, zero sequence, non-dominated sorting; genetic algorithm
Received16.01.2019
Publication date16.01.2019
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 1398

Readers community rating: votes 0

1. Ulinuha A et al. Optimal Scheduling of LTC and Shunt Capacitors in Large Distorted Distribution Systems using Evolutionary-Based Algorithms// IEEE Transactions on Power Delivery. 2008. V. 23. Pp. 434–441.

2. Korovkin N. V., Potienko A. A. The use of a genetic algorithm for solving electric engineering problems // Ehlektrichestvo. 2002. № 11. S. 2–15.

3. Belyaev N. A., Korovkin N. V., Chudnyj V. S. Matematicheskoe opisanie vliyaniya upravlyaemykh setevykh ustrojstv na rezhim ehlektroehnergeticheskikh sistem // Ehlektrichestvo. 2014. № 2. S. 18–24.

4. Belyaev N. A., Korovkin N. V., Frolov O. V., Chudnyj V. S. Issledovanie metodov optimizatsii rezhimov raboty ehnergosistem // Ehlektrotekhnika. 2013. № 2.S. 21–28.

5. Belyaev N. A., Korovkin N. V., Frolov O. V., Chudnyj V. S. Ispol'zovanie bilinejnoj teoremy dlya resheniya zadach optimizatsii potokov moschnostej v ehnergosistemakh // Ehlektrotekhnicheskie kompleksy i sistemy upravleniya. 2012. № 1. S. 77–80.

6. Korovkin N. V., Selina E. E. Efficient method of wave processes in transmission line simulation using discrete models // Proc. of the 1998 IEEE Intern. Symp. on Electromagnetic Compatibility. Pt. 1 (of 2). IEEE; Editors. Anon. Denver, CO, USA, 1998. Pp. 946–951.

7. Zitzler E., Thiele L. An Evolutionary Algorithm for Multi-objective Optimization: The Strength Pareto Approach: Technical Report 43 / TIK; ETH. Zurich, 1998.

8. Hwang S. K., Koo K., Lee J. S. Homogeneous Particle Swarm Optimizer for Multi-objective Optimization Problem // Proc. AIML Conf. Cairo, 2005. P. 141–147.

9. Srinivas N., Deb K. Multi-objective Function Optimization Using Nondominated Sorting Genetic Algorithms // Evolutionary Computation. 1994. V. 2. № 3. Pp. 221–248.

10. Korovkin N. V., Vu Q. S., Yazenin R. A. A method for minimization of unbalanced mode in three-phase power systems // 2016 IEEE NW Russia Young Researchers in Electrical and Electronic Engineering Conf. (EIConRusNW). St. Petersburg, 2016, Pp. 611–614.

11. Korovkin N. V., Belyaev N. A., Chudny V. S., Frolov O. V. Power System State Optimization. Novel Approach // EMC, Roma. 2012. September.

12. Wang J., Hamilton R. A review of nagative sequence curent // Basler Electric Company. Highland IL 62249.

13. Charles L. Fortescue, Method of Symmetrical Co-Ordinates Applied to the Solution of Polyphase Networks // Presented at the 34th Annual Convention of the AIEE (American Institute of Electrical Engineers). Atlantic City, N.J. 28 June 1918. // AIEE Transactions. 1918. V. 37. Pt. II. Pp. 1027–1140.

14. Demirchyan K. S., Nejman L. R., Korovkin N. V. Teoreticheskie osnovy ehlektrotekhniki // T. 1. SPb: Piter, 2009. 445 s.

15. Stokvis, L. G. Sur la creation des harmoniques 3 dans les alternateurs par suite du desequilibrage des phases. // Comptes Rendus. 1914. V. 159. P. 46.

16. Kaisa Miettinen. Nonlinear Multiobjective Optimization // Springer. ISBN978-0-7923-8278-2. Retrieved 29 May 2012. 298 r.

17. Gouthamkumar Nadakuditi, Veena Sharma, Ram Naresh. Application of non-dominated sorting gravitational search algorithm with disruption operator for stochastic multiobjective short term hydrothermal scheduling // IET Generation, Transmission & Distributionpp. 2016. Pp. 1–11.

18. Dusan Medve. Modeling of Power Systems Using of Matlab/SimPowerSystem // Elektroenergetika. 2012. V. 5, № 2.

19. Xiao-Ping Zhang, Christian Rehtanz, Bikash Pal. Flexible AC Transmission Systems: Modelling and Control Berlin Heidelberg: Springer-Verlag, 2006.

20. Enrique Acha, Claudio R. Fuerte-Esquivel, Hugo Ambriz-Perrez, Cersar Angeles-Camacho. F ACTS. Modelling and Simulation in Power Networks. England: John Wiley & Sons Ltd, 2004.

21. Korovkin N. V., Chechurin V. L., Hayakawa M., Inverse problems in electric circuits and electromagnetics. USA: Springer, 2006.

22. Biplab Bhattacharyya, Sanjay Kumar. Approach for the solution of transmission congestion with multi-type FACTS devices // IET Generation, Transmission & Distribution. 2016. V. 10. No 11. Pp. 2802–2809.

23. Esmaeil Ghahremani; Innocent Kamwa. Analysing the effects of different types of FACTS devices on the steady-state performance of the Hydro-Quebec network // IET Generation, Transmission & Distribution. 2014. V. 8. № 2. Pp. 233–249.

24. Sergio Bruno; Giovanni De Carne; Massimo La Scala. Transmission Grid Control Through TCSC Dynamic Series Compensation // IET Generation, Transmission & Distribution. 2016. V. 8. № 12. Pp. 3202–3211.

25. Sergio Bruno; Giovanni De Carne; Massimo La Scala. Transmission Grid Control Through TCSC Dynamic Series Compensation // IEEE Transact. on Power Systems. 2016. V. 31. № 4. Pp. 3202–3211.

26. Walla S. Sakr; Ragab A. El-Sehiemy; Ahmed M. Azmy. Optimal allocation of TCSCs by adaptive DE algorithm // IET Generation, Transmission & Distribution. 2016. V. 10. № 15. Pp. 3844–3854.

27. Ravi Bhushan, Kalyan Chatterjee. Effects of parameter variation in DFIG-based grid connected system with a FACTS device for small-signal stability analysis // IET Generation, Transmission & Distribution. 2017. V. 11. No 11. Pp. 2762–2777.

28. Rita Manuela Monteiro Pereira; Carlos Manuel Machado Ferreira; Fernando Maciel Barbosa. Comparative study of STATCOM and SVC performance on Dynamic Voltage Collapse of an Electric Power System with Wind Generation // IEEE Latin America Transact. 2014. V. 12. № 2. Pp. 138–145.

29. Jamshid Aghaei; Mahdi Zarei; Mohammadreza Asban; Sahand Ghavidel; Alireza Heidari; Vassilios G. Agelidis. Determining potential stability enhancements offlexible A Ctrans missionsy stem devices using corrected transient energy function // IET Generation, Transmission & Distribution. 2017. V. 105. № 11. Pp. 2099–2115.

30. Agus Ulinuha, Mohammad A. S. Masouma, Syed M. Islam, Reactive Power/Voltage Control for Unbalanced Distribution System Using Genetic Algorithms // Australasian Universities Power Engineering Conf. AUPEC2014, Curtin University, Perth, Australia, 28 September – 1 October 2014.

31. Hajar Bagheri Tolabi, Mohd Hasan Ali, M. Rizwan. Simultaneous Reconfiguration, Optimal Placement of DSTATCOM, and Photovoltaic Array in a Distribution System Based on Fuzzy-ACO Approach // IEEE Transact. on Sustainable Energy. 2015. V. 6. № 1. Pp. 210–218.

32. Charles L. Fortescue. Method of Symmetrical Co-Ordinates Applied to the Solution of Polyphase Networks. Presented at the 34th Annual Convention of the AIEE (American Institute of Electrical Engineers) in Atlantic City, N.J. 28 June 1918. AIEE Transact. 1918. V. 37. Pt. II. Pp. 1027–1140.

Система Orphus

Loading...
Up