About calculation the voltage of ignition of back arc – discharge into high-voltage plasma thermion diode

 
PIIS000233100002369-9-1
DOI10.31857/S000233100002369-9
Publication type Article
Status Published
Authors
Affiliation: Moscow state technical university named N.E. Baumanа
Address: Russian Federation, Moscow
Affiliation: Moscow state technical university named N.E. Baumanа
Address: Russian Federation, Moscow
Affiliation: Moscow state technical university named N.E. Baumanа
Address: Russian Federation, Moscow
Affiliation: Moscow state technical university named N.E. Baumanа
Address: Russian Federation, Moscow
Affiliation: S.P. Korolev Rocket and Space Corporation Energia (RSC Energia)
Address: Russian Federation, Korolev
Affiliation: Moscow state technical university named N.E. Baumanа
Address: Russian Federation, Moscow
Journal nameIzvestiia Rossiiskoi akademii nauk. Energetika
EditionIssue 4
Pages108-115
Abstract

The development of the spacecraft power unit for the spacecraft engines is associated with creation of the high – temperature radiation resistant systems of the system of current converters such as grid – controlled rectifiers and high voltage plasma thermionic diodes. The system of current converter is required to match the electrical parameters of the thermionic conversion power reactor (with output voltage of 120–150 V) to the parameters of the electric engine with operating voltage of hundreds – thousands of volts. 

In this connection the computations of the ignition voltage of the back arc – discharge in the interelectrode gap of the high voltage plasma thermionic diode are relevant and essential. In this paper, a semi empirical relation is obtained for computation of the ignition voltage of the back arc – discharge, depending on the vapor pressure of cesium in the interelectrode gap and the anode temperature. The obtained results can be implemented for the future development of devices of thermionic plasma power industry.

Keywordsinterelectrode gap, high voltage plasma thermionic diode, electric field strength, ignition voltage of the back arc – discharge, vapor pressure
Received27.11.2018
Publication date04.12.2018
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 1543

Readers community rating: votes 0

1. Ostrovskij V.G, Sinyavskij V.V., Sukhov Yu.I. Mezhorbital'nyj ehlektroraketnyj buksir «Gerkules» na osnove termoehmissionnoj yaderno-ehnergeticheskoj ustanovki // «Kosmonavtika i raketostroenie». 2016. № 2 (87). S. 68–74.

2. Onufriev V.V., Grishin S.D., Marakhtanov M.K., Sinyavskij V.V. Vybor parametrov sistem preobrazovaniya toka v kosmicheskikh YaEhU bol'shoj moschnosti // Atomnaya ehnergiya. 2000. T. 89. Vyp.1. S. 78–81.

3. Loshkarev A.I., Onufriev V.V., Sinyavskij V.V. Ehlektroehnergeticheskie kharakteristiki termoehmissionnogo vysokovol'tnogo dioda kosmicheskikh ehnergodvigatel'nykh ustanovok // Izv. RAN. Ehnergetika 2006. № 1. S. 87–97.

4. Onufriev V.V., Loshkarev A.I., Sinyavskij V.V. Ehlektroehnergeticheskie kharakteristiki termoehmissionnogo vysokovol'tnogo dioda dlya kosmicheskikh ehnergodvigatel'nykh ustanovok // Izv. RAN. Ehnergetika. 2006. № 1. S. 87–97.

5. Onufrieva E.V., Sinyavskij V.V., Onufriev V.V. Vysokotemperaturnye sistemy preobrazovaniya toka perspektivnykh kosmicheskikh ehnergodvigatel'nykh ustanovok // Izv. RAN. Ehnergetika. 2009. № 4. S. 137–144.

6. Sinyavskij V.V. Yadernaya ehnergetika v okolozemnom kosmose // Zemlya i Vselennaya. 2015. № 3. S. 36–47.

7. Onufriev V.V., Grishin S.D. Ehksperimental'noe issledovanie ehlektricheskoj prochnosti k obratnomu dugovomu proboyu termoehmissionnogo dioda s tsezievym napolneniem // Teplofizika vysokikh temperatur. 1996. T. 34. № 3. S. 482–485.

8. Onufriyev V.V. The Results of Investigations of High Temperature High Voltage Thermion Diode // Proceed. Intern. Energy Conversion Engin. Conf. (IECEC2000). Las Vegas (NV), 2000. P. 290–296.

9. Onufriev V.V., Loshkarev A.I. Zazhiganie obratnogo dugovogo razryada v tsezievom termoehmissionnom diode // Vestnik MGTU. Estestvennye nauki. 2003. № 2. S. 90–102.

10. Onufriev V.V., Loshkarev A.I. Zazhiganie obratnogo dugovogo razryada v barievom termoehmissionnom diode // Vestnik MGTU. Estestvennye nauki. 2005. № 1. S. 72–77.

11. Onufrieva E.V., Onufriev V.V., Grishin Yu.M., Sidnyaev N.I., Sinyavskij V.V., Ivashkin A.B. O raschete kharakteristik razryada v vysokovol'tnom plazmennom termoehmissionnom diode v rezhime obratnogo toka // Izv. RAN. Ehnergetika. 2017. № 6. S. 87–96.

12. Granovskij V.L. Ehlektricheskij tok v gaze. Ustanovivshijsya tok. M.: Nauka, 1971. 543 s.

13. Rajzer Yu.P. Fizika gazovogo razryada. M.: Nauka, 2009. 736 s.

14. Girshfel'der Dzh., Kertis Ch., Berd D. Molekulyarnaya teoriya gazov i zhidkostej. M.: IL. 1961. 915 s.

15. Davies R.H., Mason E.A., Munn R.J. High-Temperature Transport Properties of Alkali Metal Vapors // The Physics of Fluids. 1965.V.5. № 3. P. 444–452.

16. Lyubimov G.A. Priehlektrodnye sloi rezkogo izmeneniya potentsiala na «goryachikh» ehlektrodakh. (Obzor) // Teplofizika vysokikh temperatur. 1996. T. 4. Vyp. 1. S. 120–132.

Система Orphus

Loading...
Up