Finite-Dimensional Approximations of the Steklov–Poincare Operator in Periodic Elastic Waveguides

 
PIIS086956520001375-5-1
DOI10.31857/S086956520001375-5
Publication type Article
Status Published
Authors
Affiliation:
Journal nameDoklady Akademii nauk
EditionVolume 481 Issue 3
Pages264-269
Abstract

  

Keywords
Received14.10.2018
Publication date16.10.2018
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 300

Readers community rating: votes 0

1. Tsynkov S.V. Numerical solution of problems on unbounded domains // Appl. Numer. Math. 1998. V. 27. P. 465–532.

2. Lebedev V.I., Agoshkov V.I. Operatory Puankare–Steklova i ikh prilozheniya v analize. M.: Izdanie Otd. vychisl. matem. AN SSSR, 1983.

3. Nazarov S.A. Uprugie volny, zakhvachennye odnorodnym anizotropnym polutsilindrom // Matem. sbornik. 2013. T. 204, 11. S. 99–130.

4. Baronian V., Bonnet-Ben Dhia A.-S., Fliss S., Tonnoir A. Iterative methods for scattering problems in isotropic or anisotropic elastic waveguides // Wave Motion. 2016. V. 64. P. 13–-33.

5. Lenoir M., Tounsi A. The localized finite element method and its application to the two-dimensional sea-keeping problem // SIAM J. Numer. Anal. 1988. V. 25, 4. P. 629–752.

6. Nazarov S.A., Plamenevsky B.A. Elliptic problems in domains with piecewise smooth boundaries. Berlin, New York: Walter de Gruyter. 1994.

7. Nazarov S.A. Usloviya izlucheniya Umova–Mandel'shtama v uprugikh periodicheskikh volnovodakh // Matem. sbornik. 2014. T. 205, 7. S. 43–72.

8. Mazja W.G., Nasarow S.A., Plamenewski B.A. Asymptotische Theorie elliptischer Rand−wert−auf−ga−ben in sin−gulär gestörten Gebieten. 1 & 2 Berlin: Akademie-Verlag. 1991. (Anglijskij perevod : Maz’ya V., Nazarov S., Plamenevskij B. Asymptotic theory of elliptic boundary value problems in singularly perturbed domains. Vol. 1 & 2. Basel: Birkhäuser Verlag, 2000)

9. Baronian V., Bonnet-Ben Dhia A.-S., Luneville E. Transparent boundary conditions for the harmonic diffraction problem in an elastic waveguide // Journal of Computational and Applied Mathematics. 2010. V. 234. P. 1945–1952.

10. Umov N.A. Uravneniya dvizheniya ehnergii v telakh. Odessa: Tipogr. Ul'rikha i Shul'tse, 1874.

11. Mandel'shtam L.I. Lektsii po optike teorii otnositel'nosti i kvantovoj mekhanike. Sb. trudov. T. 2. M.: Izd-vo AN SSSR, 1947.

12. Vorovich I.I., Babeshko V.A. Dinamicheskie smeshannye zadachi teorii uprugosti dlya neklassicheskikh oblastej. M.: Nauka, 1979.

13. Gel'fand I.M. Razlozhenie po sobstvennym funktsiyam uravneniya s periodicheskimi koehffitsientami // Doklady AN SSSR. 1950. T. 73. S. 1117–1120. 2018.

Система Orphus

Loading...
Up