Identification and analysis of VTC2 homologs encoding key enzyme of L-ascorbic acid biosynthesis in tomato species (Solanum section of Lycopersicon)

 
PIIS086956520003457-5-1
DOI10.31857/S086956520003457-5
Publication type Article
Status Published
Authors
Affiliation: Institute of Biochemistry, RAS
Address: Russian Federation
Affiliation:
Institute of Biochemistry, RAS
Lomonosov Moscow State University
Address: Russian Federation
Affiliation:
Institute of Biochemistry, RAS
Lomonosov Moscow State University
Address: Russian Federation
Journal nameDoklady Akademii nauk
EditionVolume 483 Issue 6
Pages682-686
Abstract

The complete nucleotide sequences of 11 wild and cultivated tomato GDP-L-galactose-phosphorylase-1 homologs (VTC2) were identified and characterized. The overall level of nucleotide variability was 9.19%. Totally 25 out of 54 cDNA SNPs, were non-synonymous and resulted in amino acid substitutions. In the group of green-fruited tomato species, more SNPs were detected than in the group of red-fruited species, but the percentage of non-synonymous substitutions in red-fruited tomatoes was significantly higher (66.7% vs. 37.5%). In the translated amino acid sequences the GDF-L-galactose-hexose-1-phosphate guanyltransferase domain and highly conserved HIT-motif were identified and a conservative motif specific for VTC2 of Solanoideae species was detected.

Keywords
Received26.12.2018
Publication date26.12.2018
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 1102

Readers community rating: votes 0

1. Yang D., Meng L., Ma N., Yang X., Meng Q. // Plant Physiology and Biochemistry 2017. V. 112. Article 218e226.

2. Pavet V., Olmos E., Kiddle G., Mowla S., Kumar S., Antoniw J., Alvarez M.E.,Foyer C.H. // Plant Physiol. 2005. V. 139. Article 1291e1303.

3. Garchery C., Gest N., Do P.T., Alhagdow M., Baldet P., Menard G., Rothan C., Massot C., Gautier H., Aarrouf J., et al. // Plant Cell Environ. 2013. V. 36. Article 159e175.

4. Barth C., De Tullio M., Conklin P.L. // J. Exp. Bot. 2006. V.57 Article 1657e1665.

5. Giovannoni J. // PNAS. 2007. V. 104.№ 22. P. 9109-9110

6. Linster C.L., Clarke S.G. // Trends in plant science. 2008. V. 13. № 11. P. 567 - 573.

7. Oguz T., Cantug B., Bilal O., Duygu Y. O., Dane R., Nilufer T., Anne F., Sami D. // Hort Science. 2014. V. 49. P. 1003 - 1009.

8. Edwards K., Johnstone C., Thompson C. // Nucleic Acids Res. – 1991. – V.19. – №6. – P. 1349.

9. Slugina M.A., Shchennikova A.V., Kochieva E.Z. // Mol Genet Genomics. 2017. V. 292. № 5. 1123 - 1138.

10. Slugina M.A., Shchennikova A.V., Kochieva E.Z. // Plant molecular biology reporter. 2018. https://doi.org/10.1007/s11105-018-1071-5

11. 100 Tomato Genome Sequencing Consortium // Plant J. 2014. V. 80. № 1. P. 136 - 148.

12. Peralta I.E., Spooner D.M., Knapp S. // Systematic Botany Monographs. 2008. V.84. P. 1-186.

13. Hou H.M., Li H.E., Gao M., Wang H., Jiao C., Wang X.P. // Genet Mol Res. 2013. V. 12. № 3. P. 3830 - 3844.

14. Krakowiak A., Fryc I. // Postepy Biochem. 2012 V. 58. № 3. P. 302 - 313.

15. Bailey T.M., Boden M., Buske F.A., Frith M., Grant C. E., Clementi L., Ren J., Li W.W., Noble W.S. // Nucleic Acids Research. 2009. V. 37. P. 202 -208.

Система Orphus

Loading...
Up