Molecular-electronic hydrophone for low-frequency research of the world ocean ambient noise.

Publication type Article
Status Published
Affiliation: Moscow Institute of Physics and Technology
Address: Russian Federation
Affiliation: Moscow Institute of Physics and Technology
Address: Russian Federation
Affiliation: Moscow Institute of Physics and Technology
Address: Russian Federation
Moscow Institute of Physics and Technology
Kotelnikov Institute of Radio Engineering and Electronics, RAS
Address: Russian Federation
Affiliation: Moscow Institute of Physics and Technology
Address: Russian Federation
Journal nameDoklady Akademii nauk
EditionVolume 483 Issue 6

This study focuses on the development of an instrumental measurement framework for the needs of low-frequency sensing of sea noise. The paper presents the experimental results of testing the technical characteristics of the molecular-electronic hydrophone. Researches of amplitude-frequency and noise characteristics of prototypes are resulted. The operation of the hydrophone with a bandwidth of 0.02-200 Hz and a sensitivity of 0.75 mV/PA is demonstrated. The method of correlation analysis is used to measure own noises.

Publication date26.12.2018
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 1516

Readers community rating: votes 0

1. G. M. Wenz, Acoustic Ambient Noise in the Ocean: Spectra and Sources, The journal of the acoustical society of America, V. 34, N. 12, 1962, 1936-19556

2. Pat. SShA №4178577, kl. 367-159 (N04V 13/00), 1979

3. Liu, D., Liang, Y., Jin, L., Sun, H., Cheng, L., and Guang, B.-O.: Highly sensitive fiber laser ultrasound hydrophones for sensing and imaging applications, Optics Letters, vol. 41, no. 19, October 1 2016.

4. Shen, B., Wada, Y., Koyama, D., Isago, R., Mizuno, Y. and Nakamura, K.: Fiber-optic ultrasonic probe based on refractive-index modulation in water, in Proceedings of SPIE7753 21st International Conference on Optical Fiber Sensors, 7753, pp.77539W, 2011.

5. Tan, Y. , Zhang, Y. and Guan, B.: Hydrostatic pressure insensitive dual polarization fiber grating laser hydrophone, IEEE Sens. J., vol. 11, no. 5, pp. 1169-1172, 2011.

6. Kim, K. S., Mizuno, Y., Nakamura, K.: Fiber-optic ultrasonic hydrophone using short Fabry-Perot cavity with multilayer 5 reflectors deposited on small stub, Ultrasonics, vol. 54, no. 4, pp. 1047-1051, 2014.

7. Ma, J., Zhao, M., Huang, X., Chen, H. B. Y., and Yu, M.: Low cost, high performance white-light fiberoptic hydrophone system with a trackable working point, Optics express, vol. 24, no. 17, 19008, 22 Aug 2016.

8. T. Deng, D. Chen, J. Chen, Z. Sun, J. Wang, UMicroelectromechanical Systems-Based Electrochemical Seismic Sensors With Insulating Spacers Integrated Electrodes for Planetary ExplorationF , IEEE SENSORS JOURNAL, VOL. 16, NO. 3, FEBRUARY 1, 2016.

9. D.G. Levchenko, I.P. Kuzin, M.V. Safonov, V.N. Sychikov, I.V. Ulomov, and B.V. Kholopov, UExperience in seismic signal recording using broadband electrochemical seismic sensorsF, Seism. Instruments, vol. 46, no. 3, pp. 250-264, 2010

10. D. Zaitsev, A. Antonov, V. Krishtop UAngular MET sensor for precise azimuth determinationF, Proceedings Volume 10224, International Conference on Micro- and Nano-Electronics 2016;102241H (2016); doi: 10.1117/12.2267073

11. G. N. Antonovskaya, N. K. Kapustian, A. I. Moshkunov, A. V. Danilov, K. A. Moshkunov, UNew seismic array solution for earthquake observations and hydropower plant health monitoring,F J Seismol (2017) 21: 1039.

12. N. S. Lidorenko, B. I. Ilin, I. A. Zaidenman, V. V. Sobol, I. G. Shchigorev, UAn Introduction to Molecular ElectronicsF, Moscow, Russia: Energoatomizdat, 1984, p. 320.

13. V. M. Agafonov, A. N. Neeshpapa, and A. S. Shabalina, UElectrochemical seismometers of linear and angular motion,F in Encyclopedia of Earthquake Engineering. Berlin, Germany: Springer-Verlag, pp. 944-961, 2015.

14. A. S. Shabalina et al., UModern measuring instruments based on molecular electronic transducers,F Achievements Modern Radioelectron., vol. 9, pp. 4Ts33, Sep. 2014. [Online]. Available:

15. D. L. Zaitsev, V. Agafonov, E. Egorov, A. Antonov, and A. Shabalina, UMolecular electronic angular motion transducer broad band self-noise,F Sensors, vol. 15, no. 11, pp. 29378-29392, 2015.

Система Orphus