views: 1731
Readers community rating: votes 0
1. L. Devroye, The series method for random variate generation and its application to the Kolmogorov-Smirnov distribution. American Journal of Mathematical and Management Sciences, 1(4) (1981), 359-379.
2. S. M. Ermakov, V. V. Nekrutkin and A. S. Sipin, Random Processes for Classical Equations of Mathematical Physics, Kluwer Academic Publishers, Dodrecht, 1989.
3. A. Friedman. Partial differential equations of parabolic type. Courier Dover Publications, 2008.
4. A. Haji-Sheikh and E. M. Sparrow, The floating random walk and its application to Monte Carlo solutions of heat equations, SIAM J. Appl. Math. v. 14 (1966), 2, 570–589.
5. K. Ito, G. Makkin. Diffuzionnye protsessy i ikh traektorii. Izd-vo Mir, Moskva, 1968.
6. P. Kloeden, E. Platen, H. Schurz. Numerical Solution of Stochastic Differential Equations. Springer, Heidelberg-Berlin, 2012.
7. M. E. Muller, Some continuous Monte Carlo methods for the Dirichlet problem, Ann. Math. Statist. 27 (1956), no. 3, 569–589.
8. K. K. Sabelfeld, Monte Carlo Methods in Boundary Value Problems, Springer, Berlin, 1991.
9. K. K. Sabelfeld and N. A. Simonov, Stochastic Methods for Boundary Value Problems. Numerics for High-imensional PDEs and Applications, De Gruyter, Berlin, 2016.
10. K. K. Sabelfeld, A mesh free floating random walk method for solving diffusion imaging problems, Statist. Probab. Lett. 121 (2017), 6–11.
11. K. K. Sabelfeld. Random walk on spheres method for solving drift-diffusion problems. Monte Carlo Methods Appl. 2016; 22 (4): 265-281.