On Sobolev Classes Containing Solutions to Fokker–Planck–Kolmogorov Equations

 
PIIS086956520002913-7-1
DOI10.31857/S086956520002913-7
Publication type Article
Status Published
Authors
Occupation: Professor
Affiliation:
Lomonosov Moscow State University
National Research University “Higher School of Economics”
St. Tikhons Orthodox University
Address: Russian Federation, Moscow
Occupation: 
Affiliation: Lomonosov Moscow State University
Address: Russian Federation, Moscow
Occupation: 
Affiliation:
Lomonosov Moscow State University
National Research University “Higher School of Economics”
St. Tikhons Orthodox University
Address: Russian Federation, Moscow
Journal nameDoklady Akademii nauk
EditionVolume 482 Issue 6
Pages631-634
Abstract

The main result of this paper answers negatively a long-standing question and shows that a density of a probability measure satisfying the Fokker–Planck–Kolmogorov equation with a drift integrable with respect to this density can fail to belong to the Sobolev class W^1,1(R^d). There is also a version of this result for densities with respect to Gaussian measures.

Keywords
Received10.12.2018
Publication date13.12.2018
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 1407

Readers community rating: votes 0

1. Bogachev V.I., Krylov N.V., Röckner M.// Comm. Partial Differ. Equ. 2001. V. 26. P. 2037—2080.

2. Bogachev V.I., Krylov N.V., Rekner M.// Uspekhi mat. nauk. 2009. T. 64, N 6. S. 5116.

3. Bogachev V.I., Krylov N.V., Röockner M., Shaposhnikov S.V. Fokker—Planck—Kolmogorov equations. Amer. Math. Soc., Rhode Island, Providence, 2015.

4. Bogachev V.I., Röckner M.// J. Funct. Anal. 1995. V. 133. P. 168—223.

5. Metafune G., Pallara D., Rhandi A.// J. Funct. Anal. 2005. V. 223. P. 396—424.

6. Bogachev V.I., Krylov N.V., Röckner M.// J. Math. Pures Appl. 2006. V. 85. P. 743—757.

7. Bourgain J., Brezis H.// J. Eur. Math. Soc. 2007. V. 9. P. 277—315.

8. Conti S., Faraco D., Maggi F.// Arch. Rational Mech. Anal. 2005. V. 175. P. 287—300.

9. Dacorogna B., Fusco N., Tartar L.// Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 2003. V. 14. P. 239—245.

10. Lunardi A., Metafune G.// Differ. Integral Equ. 2004. V. 17, N 1-2. P. 73—97.

11. Maz'ya V.// J. Eur. Math. Soc. 2010. V. 12. P. 221—240.

12. Ornstein D.// Arch. Rational Mech. Anal. 1962. V. 11. P. 40—49.

13. Chung L.O.// Proc. Amer. Math. Soc. 1983. V. 88. P. 531—532.

14. Li P., Schoen R.// Acta Math. 1984. V. 153, N 3-4. P. 279—301.

15. Bogachev V.I., Shaposhnikov S.V.// Annali Matem. Pura Appl. 2017. V. 196, N 5. P. 1609—1635.

Система Orphus

Loading...
Up