Natural Computations and Artificial Intelligence

 
PIIS023620070019511-9-1
DOI10.31857/S023620070019511-9
Publication type Article
Status Published
Authors
Affiliation: Institute of Philosophy RAS
Address: 12/1 Goncharnaya Str., Moscow 109240, Russian Federation
Journal nameChelovek
EditionVolume 33 Issue 2
Pages65-83
Abstract

The research program focused on the analysis of computational approaches to natural and artificial intelligence is one of four accepted for implementation at the Center for the Philosophy of Consciousness and Cognitive Sciences of the Institute of Philosophy, Russian Academy of Sciences. Presumably, it should become a direction of interdisciplinary research at the crossroad of philosophy, cognitive psychology, cognitive and social neuroscience, and artificial intelligence. The working hypothesis proposed for discussion attended by the relevant specialists is as follows: if an acceptable computational theory of mind appears, we will be able to restrict our research to a simple scientific ontology describing only parts of a physical implementation of computational algorithms, adding a relevant version of computational mathematics thereto. Another hypothesis proposed is that there is an essential ontological intersection between the mechanisms underlying human cognitive abilities and their social organization, both of which serving as an implementation medium for complex distributed cognitive computations. Particularly those which are associated with social organization are responsible for logical and verbal (“rational”) cognitive abilities. As a result of some previous research, an ontology of nested distributed computational systems was generally formulated, which, as expected, can demonstrate significant heuristic potential if supplemented with an adequate mathematical apparatus. Since only individuals with certain cognitive abilities can be social agents, a philosophical problem arises: are cognitive abilities necessary or sufficient to involve their carriers in stable social interactions? In the first case, we have a weak thesis about the cognitive determination of sociality, in the second — the strong one. The choice between these positions is, too, a subject of future research.

Keywordscognitive computations, artificial intelligence, cognitive psychology, cognitive social neuroscience, scientific ontology, rationality, multi-agent systems
Received06.04.2022
Publication date11.05.2022
Number of characters33359
Cite  
100 rub.
When subscribing to an article or issue, the user can download PDF, evaluate the publication or contact the author. Need to register.

Number of purchasers: 0, views: 356

Readers community rating: votes 0

1. Dzhokhadze I.D. Analiticheskiĭ pragmatizm Roberta Brehndoma. IFRAN; 2015.

2. Mikhajlov I.F. Virtual'nye proektsii chelovecheskogo mira: mul'tiagentnye sistemy // Filosofskie problemy informatsionnykh tekhnologij i kiberprostranstva. 2017, №13(1). S. 18–28. doi:10.17726/philIT.2017.1.1

3. Mikhajlov I.F. Vospriyatie, logika i mnozhestvennost' ratsional'nykh reprezentatsiĭ mira. Filosofskie nauki. 2019, № 62(7) S. 37–53. doi:10.30727/0235-1188-2019-62-7-37-53

4. Mikhajlov I.F. Vychislitel'nyj podkhod v sotsial'nom poznanii. Filosofiya nauki i tekhniki. 2021, №26(1), S. 23–37. doi:10.21146/2413-9084-2021-26-1-23-37

5. Mikhajlov I.F. K gipersetevoj teorii soznaniya [Toward a Hyper-Network Theory of Consciousness]. Voprosy filosofii. 2015, №11. S. 87–98.

6. Mikhajlov I.F. Kognitivnye vychisleniya i sotsial'naya organizatsiya. Voprosy filosofii. 2020, №11, S. 125–128. doi:10.21146/0042‒8744‒2020‒11-125-128

7. Mikhajlov I.F. Sotsial'naya ontologiya: vremya vychislenij. Vestnik Tomskogo gosudarstvennogo universiteta. Filosofiya Sotsiologiya Politologiya. 2020, № 55, S. 36–46. doi:10.17223/1998863X/55/5

8. Mikhajlov I.F. Filosofskie problemy modelirovaniya mul'tiagentnykh sistem. Filosofskie nauki. 2018, №12, S. 56–74. doi:10.30727/0235-1188-2018-12-56-74

9. Mikhajlov I.F. Chelovek, soznanie, seti. M.: IFRAN, 2015.

10. Anderson J. R. The Architecture of Cognition. Harvard: Harvard University Press, 1983.

11. Attneave F. In defense of homunculi. Sensory Communication. Contributions to the Symposium on Principles of Sensory Communication, July 19-Aug. 1, 1959, Endicott House. Cambridge: MIT Press, 1961. P. 777–782.

12. Brandom R.B. Making It Explicit: Reasoning, Representing, and Discursive Commitment. Harvard: Harvard University Press, 2001.

13. Buckley C.L., Kim C.S., McGregor S., Seth A. K. The free energy principle for action and perception: A mathematical review. Journal of Mathematical Psychology. 2017 N 81. P. 55–79. doi:10.1016/j.jmp.2017.09.004

14. Calzavarini F. Chapter 3. Inferential processing with concrete vs. abstract words and visual cortex. Bolognesi M., Steen G. J. (Eds.). Perspectives on Abstract Concepts. Cognition, Language and Communication. Amsterdam: John Benjamins Publishing Company, 2019. P. 59–74. doi:10.1075/hcp.65.04cal

15. Calzavarini F. Inferential and referential lexical semantic competence: A critical review of the supporting evidence. Journal of Neurolinguistics, 2017, N 44. P. 163-189. doi:10.1016/j.jneuroling.2017.04.002

16. Carvalho E.M. Socially Extending the Mind Through Social Affordances. Curado M., Gouveia S. S. (Eds.) Automata’s Inner Movie: Science and Philosophy of Mind. Wilmington: Vernon Press, 2019. P. 193–212.

17. Clark A. Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behavioral and Brain Sciences. 2013, N 36(3), P. 181–204. doi:10.1017/S0140525X12000477

18. Colombo M., Wright C. First principles in the life sciences: the free-energy principle, organicism, and mechanism. Synthese. Published online: Sept. 10 2018. doi:10.1007/s11229-018-01932-w

19. Craver C., Bechtel W. Mechanism. In: Pfeifer J., Sarkar S. (Eds.) The Philosophy of Science: An Encyclopedia. Psychology Press; 2006:469-478.

20. Debruille J.B., Brodeur M.B., Franco Porras C. N300 and Social Affordances: A Study with a Real Person and a Dummy as Stimuli. In: di Pellegrino G (Ed.) PLoS ONE. 2012, N 7(10): e47922. doi:10.1371/journal.pone.0047922

21. DeSilva J.M., Traniello J.F. A., Claxton A.G., Fannin L.D. When and Why Did Human Brains Decrease in Size? A New Change-Point Analysis and Insights from Brain Evolution in Ants. Frontiers in Ecology and Evolution. 2021, N 9. doi:10.3389/fevo.2021.742639

22. Fagin R., Halpern J., Moses Y., Vardi M. Reasoning About Knowledge. Cambridge: The MIT Press, 2003. doi:10.7551/mitpress/5803.001.0001

23. Fetzer J. H. Thinking and Computing: Computers as Special Kinds of Signs. Minds and Machines. 1997, N 7(3). P. 345–364. doi:10.1023/A:1008230900201

24. Friston K., Frith C. A. Duet for one. Consciousness and Cognition. 2015, N 36, P. 390–405. doi:10.1016/j.concog.2014.12.003

25. Friston K., Kiebel S. Predictive coding under the free-energy principle. Philosophical Transactions of the Royal Society: Biological Sciences. 2009, N 364(1521), P. 1211–1221. doi:10.1098/rstb.2008.0300

26. Friston K.J. Waves of Prediction. PLOS Biology. 2019, N 17(10), P. e3000426. doi:10.1371/journal.pbio.3000426

27. Friston K.J., Frith C.D. Active Inference, Communication and Hermeneutics. Cortex. 2015, N 68, P. 129–143. doi:10.1016/j.cortex.2015.03.025

28. von Helmholtz H. Treatise on Physiological Optics. NY: Dover Publications, 2013.

29. Hohwy J. The Predictive Mind. Oxford: Oxford University Press, 2014. doi:10.1093/acprof:oso/9780199682737.001.0001

30. Keller G.B., Mrsic-Flogel T. D. Predictive Processing: A Canonical Cortical Computation. Neuron. 2018. N 100(2), P. 424–435. doi:10.1016/j.neuron.2018.10.003

31. Kelly M.P., Kriznik N.M., Kinmonth A.L., Fletcher P.C. The Brain, Self and Society: a social-neuroscience model of predictive processing. Social Neuroscience. 2019, N 14(3), P. 266-276. doi:10.1080/17470919.2018.1471003

32. Kilner J.M., Friston K.J., Frith C.D. Predictive Coding: An Account of the Mirror Neuron System. Cognitive Processing. 2007, N 8(3), P. 159–166. doi:10.1007/s10339-007-0170-2

33. Kremer M. Representation or Inference: Must We Choose? Should We? Weiss B., Wanderer J. (Eds.). Reading Brandom: On Making It Explicit. London; New York: Routledge, 2010.

34. Marr D. Vision: A Computational Investigation into the Human Representation and Processing of Visual Information. Cambridge: The MIT Press, 2010. doi:10.7551/mitpress/9780262514620.001.0001

35. McDermott D.V. Mind and Mechanism. Cambridge: MIT Press, 2001. [Electronic resource] URL: https://books.google.cm/books?id=aSm4BhlmHYEC

36. Pylyshyn Z.W. Computation and Cognition: Toward a Foundation for Cognitive Science. Cambridge: The MIT Press, 1986.

37. Ryder D., Favorov O.V. The New Associationism: A Neural Explanation for the Predictive Powers of Cerebral Cortex. Brain and Mind. 2001, N 2(2), P. 161–194. doi:10.1023/A:1012296506279

38. Seth A.K, Hohwy J. Predictive Processing as An Empirical Theory for Consciousness Science. Cognitive Neuroscience. 2021, N 12(2), N 89–90. doi:10.1080/17588928.2020.1838467

39. Weiss B., Wanderer J. Introduction. Weiss B., Wanderer J. (Eds.). Reading Brandom: On Making It Explicit. London; New York: Routledge, 2010.

Система Orphus

Loading...
Up