Upper Bounds on Peaks in Discrete-Time Linear Systems

 
PIIS000523100002775-6-1
DOI10.31857/S000523100002775-6
Publication type Article
Status Published
Authors
Affiliation: Moscow Institute of Physics and Technology (State University), MIPT
Address: Russian Federation, Moscow
Affiliation:
Institute of Control Sciences RAS
Skolkovo Institute of Science and Technology
Address: Russian Federation, Moscow
Affiliation:
Institute of Control Sciences RAS
Federal Research Center «Computer Science and Control» of Russian Academy of Sciences
Address: Russian Federation, Moscow
Journal nameAvtomatika i Telemekhanika
EditionIssue 11
Pages32-46
Abstract

    

Keywords
Received30.11.2018
Publication date05.12.2018
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 359

Readers community rating: votes 0

1. Tekhnicheskaya kibernetika. Teoriya avtomaticheskogo regulirovaniya // Pod red. d-ra tekhn. nauk, prof. V.V. Solodovnikova. Kn. 2. Analiz i sintez linejnykh nepreryvnykh i diskretnykh sistem avtomaticheskogo regulirovaniya. M.: Mashinostroenie, 1967.

2. Pervozvanskij A.A. Kurs teorii avtomaticheskogo upravleniya. M.: Nauka, 1986.

3. Kuo B.C., Golnaraghi F. Automatic Control Systems. 8th ed. N.Y.: Wiley, 2003.

4. Letov A.M. Dinamika poleta i upravlenie. M.: Nauka, 1969.

5. Polyak B.T., Smirnov G. Large Deviations for Non-zero Initial Conditions in Linear Systems // Automatica. 2016. V. 74. P. 297–307.

6. Polyak B.T., Tremba A.A., Khlebnikov M.V., Shcherbakov P.S., Smirnov G.V. Large Deviations in Linear Control Systems with Nonzero Initial Conditions // Autom. Remote Control. 2016. V. 76. No. 6. P. 957–976.

7. Polyak B.T., Khlebnikov M.V., Scherbakov P.S. Upravlenie linejnymi sistemami pri vneshnikh vozmuscheniyakh: Tekhnika linejnykh matrichnykh neravenstv. M.: LENAND, 2014.

8. Vladimirov A.A., Izmailov R.N. Transients in Adaptive Control of a Deterministic Autoregression Process // Autom. Remote Control. 1992. V. 53. No. 6. P. 800–803.

9. Delyon B., Izmailov R., Juditsky A. The Projection Algorithm and Delay of Peaking in Adaptive Control // IEEE Trans. Autom. Control. 1993. V. 38. No. 4. P. 581–584.

10. Polyak B.T., Shcherbakov P.S., Smirnov G. Peak Effects in Stable Linear Difference Equations // arXiv:1803.00808v1 [cs.SY], Mar 2018.

11. Kozyakin V., Pokrovskii A. Estimates of Amplitudes of Transient Regimes in Quasicontrollable Discrete Systems // arXiv:0908.4138v1 [math.DS], Aug. 2009.

12. Kogan M.M., Krivdina L.N. Synthesis of Multipurpose Linear Control Laws of Discrete Objects under Integral and Phase Constraints // Autom. Remote Control 2011. V. 72. No. 7. P. 1427–1439.

13. Hinrichsen D., Plischke E., Wurth F. State Feedback Stabilization with Guaranteed Transient Bounds // Proc. 15th Int. Symp. Math. Theory Networks & Syst. August, 2002.

14. Whidborne J.F., McKernan J. On Minimizing Maximum Transient Energy Growth // IEEE Trans. Autom. Control. 2007. V. 52. No. 9. P. 1762–1767.

15. Balandin D.V., Kogan M.M. Lyapunov Function Method for Control Law Synthesis under One Integral and Several Phase Constraints // Differ. Equat. 2009. V. 45. No. 5. P. 670–679.

16. Boyd S., El Ghaoui L., Feron E., Balakrishnan V. Linear Matrix Inequalities in Systems and Control Theory. Philadelphia: SIAM, 1994.

17. Horn R.A., Johnson C.R. Matrix Analysis. 23rd printing. N.Y.: Cambridge Univ. Press, 2010.

18. Trefethen L.N., Embree M. Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators. Princeton, N.J.: Princeton Univ. Press, 2005.

19. Dowler D.A. Bounding the Norm of Matrix Powers, M.S. thesis, Math. Dept., Brigham Young University, USA, 2013 // https://scholarsarchive.byu.edu/etd/3692

20. Kreiss H.O. Uber die stabilitatsdefinition fur differenzengleichungen die partielle differentialgleichungen approximieren // BIT. 1962. V. 2. P. 153–181.

21. Gahinet P., Nemirovski A., Laub A.J., Chilali M. LMI Control Toolbox For Use with Matlab // The MathWorks, Inc., Natick, MA, 1995.

22. Grant M., Boyd S. CVX: Matlab software for disciplined convex programming (web page and software) // http://stanford.edu/ boyd/cvx

23. Polyak B.T., Shcherbakov P.S. Superstable Linear Control Systems. I. Analysis // Autom. Remote Control. 2002. V. 63. No. 8. P. 1239–1254.

24. Polyak B.T., Shcherbakov P.S. Superstable Linear Control Systems. II. Design // Autom. Remote Control. 2002. V. 63. No. 11. P. 1745–1763.

25. Polyak B.T. Extended Superstability in Control Theory // Autom. Remote Control. 2004. V. 65. No. 4. P. 567–576.

26. Petersen I.R. A Stabilization Algorithm for a Class of Uncertain Linear Systems // Syst. Control Lett. 1987. V. 8. P. 351–357.

Система Orphus

Loading...
Up